A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Efficient and Effective Model to Handle Missing Data in Classification. | LitMetric

Missing data is one of the most important causes in reduction of classification accuracy. Many real datasets suffer from missing values, especially in medical sciences. Imputation is a common way to deal with incomplete datasets. There are various imputation methods that can be applied, and the choice of the best method depends on the dataset conditions such as sample size, missing percent, and missing mechanism. Therefore, the better solution is to classify incomplete datasets without imputation and without any loss of information. The structure of the "Bayesian additive regression trees" (BART) model is improved with the "Missingness Incorporated in Attributes" approach to solve its inefficiency in handling the missingness problem. Implementation of MIA-within-BART is named "BART.m". As the abilities of BART.m are not investigated in classification of incomplete datasets, this simulation-based study aimed to provide such resource. The results indicate that BART.m can be used even for datasets with 90 missing present and more importantly, it diagnoses the irrelevant variables and removes them by its own. BART.m outperforms common models for classification with incomplete data, according to accuracy and computational time. Based on the revealed properties, it can be said that BART.m is a high accuracy model in classification of incomplete datasets which avoids any assumptions and preprocess steps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710403PMC
http://dx.doi.org/10.1155/2020/8810143DOI Listing

Publication Analysis

Top Keywords

incomplete datasets
16
classification incomplete
12
missing data
8
datasets imputation
8
missing
6
datasets
6
classification
5
incomplete
5
efficient effective
4
effective model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!