NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720477PMC
http://dx.doi.org/10.1016/j.chemer.2020.125613DOI Listing

Publication Analysis

Top Keywords

martian crust
12
alteration minerals
12
alteration
8
mafic dike
8
habitable environments
8
hydrothermally altered
8
habitability hydrothermal
4
hydrothermal systems
4
systems jezero
4
jezero gusev
4

Similar Publications

The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state.

View Article and Find Full Text PDF

Zircon trace element evidence for early hydrothermal activity on Mars.

Sci Adv

November 2024

Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Perth Bentley WA 6845, Australia.

Article Synopsis
  • Finding direct evidence of water on early Mars helps us understand how water originated on rocky planets and affects the potential for habitability.
  • Micro- to nanoscale microscopy of a specific zircon from a meteorite revealed signs of hydrothermal conditions on Mars around 4.45 billion years ago.
  • The observed textural features, including elemental zoning and nanoscale inclusions, suggest that this zircon formed in the presence of hydrous fluids, indicating that Mars once had a wet crust before the heavy impact events.
View Article and Find Full Text PDF

Metamorphism in a wet Martian middle crust.

Proc Natl Acad Sci U S A

December 2024

Department of Earth, Environmental and Geographical Sciences, University of British Columbia, Vancouver, BC V1V 1V7, Canada.

View Article and Find Full Text PDF

The early Martian atmosphere had 0.25 to 4 bar of CO but thinned rapidly around 3.5 billion years ago.

View Article and Find Full Text PDF

Liquid water in the Martian mid-crust.

Proc Natl Acad Sci U S A

August 2024

Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720.

Large volumes of liquid water transiently existed on the surface of Mars more than 3 billion years ago. Much of this water is hypothesized to have been sequestered in the subsurface or lost to space. We use rock physics models and Bayesian inversion to identify combinations of lithology, liquid water saturation, porosity, and pore shape consistent with the constrained mid-crust (∼11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!