In mammalian early embryos, the transition from maternal to embryonic control of gene expression requires timely degradation of a subset of maternal mRNAs (MRD). Recently, zygotic genome activation (ZGA)-dependent MRD has been characterized in mouse 2-cell embryo. However, in early embryos, the dynamics of MRD is still poorly understood, and the maternal factor-mediated MRD before and along with ZGA has not been investigated. Argonaute 2 (Ago2) is highly expressed in mouse oocyte and early embryos. In this study, we showed that Ago2-dependent degradation involving RNA interference (RNAi) and RNA activation (RNAa) pathways contributes to the decay of over half of the maternal mRNAs in mouse early embryos. We demonstrated that AGO2 guided by endogenous small interfering RNAs (endosiRNAs), generated from double-stranded RNAs (dsRNAs) formed by maternal mRNAs with their complementary long noncoding RNAs (CMR-lncRNAs), could target maternal mRNAs and cooperate with P-bodies to promote MRD. In addition, we also showed that AGO2 may interact with small activating RNAs (saRNAs) to activate Yap1 and Tead4, triggering ZGA-dependent MRD. Thus, Ago2-dependent degradation is required for timely elimination of subgroups of maternal mRNAs and facilitates the transition between developmental states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691497PMC
http://dx.doi.org/10.1038/s41420-020-00368-xDOI Listing

Publication Analysis

Top Keywords

early embryos
20
maternal mrnas
20
maternal
8
mouse early
8
zga-dependent mrd
8
ago2-dependent degradation
8
mrd
6
early
5
embryos
5
mrnas
5

Similar Publications

A tripartite transcriptional module regulates protoderm specification during embryogenesis in Arabidopsis.

New Phytol

December 2024

State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.

Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana.

View Article and Find Full Text PDF

Single-cell analysis of bidirectional reprogramming between early embryonic states identify mechanisms of differential lineage plasticities in mice.

Dev Cell

December 2024

Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA. Electronic address:

Two distinct lineages, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common inner cell mass (ICM) progenitors in mammalian embryos. To study how these sister identities are forged, we leveraged mouse embryonic stem (ES) cells and extra-embryonic endoderm (XEN) stem cells-in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses showed distinct rates, efficiencies, and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions.

View Article and Find Full Text PDF

Study Question: Are live birth rates (LBRs) per woman following flexible progestin-primed ovarian stimulation (fPPOS) treatment non-inferior to LBRs per woman following the conventional GnRH-antagonist protocol in expected suboptimal responders undergoing freeze-all cycles in assisted reproduction treatment?

Summary Answer: In women expected to have a suboptimal response, the 12-month likelihood of live birth with the fPPOS treatment did not achieve the non-inferiority criteria when compared to the standard GnRH antagonist protocol for IVF/ICSI treatment with a freeze-all strategy.

What Is Known Already: The standard PPOS protocol is effective for ovarian stimulation, where medroxyprogesterone acetate (MPA) is conventionally administered in the early follicular phase for ovulatory suppression. Recent retrospective cohort studies on donor cycles have shown the potential to prevent premature ovulation and maintain oocyte yields by delaying the administration of MPA until the midcycle (referred to as fPPOS), similar to GnRH antagonist injections.

View Article and Find Full Text PDF

The study examines the morphometric development of the anterior cranial fossa in human fetuses and its clinical implications. The anterior cranial fossa, crucial for protecting the frontal lobes, was analyzed during prenatal development using innovative computer image processing techniques. We hypothesized that the growth of the anterior cranial fossa is not uniform throughout fetal development and that changing geometric relationships are important for possible therapeutic interventions in cases of congenital defects.

View Article and Find Full Text PDF

Mutation in Linked to Altered O-Antigen Biosynthesis and Attenuated Virulence in Rough Infantis Variant.

Vet Sci

November 2024

Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA.

serovar Infantis has emerged as a prevalent foodborne pathogen in poultry with significant global health implications. This study investigates the molecular characteristics influencing virulence in a Infantis rough variant collected from a poultry farm in the USA. In this study, whole genome sequencing and comparative genomics were performed on smooth and rough poultry Infantis isolates, while chicken embryo lethality assay was conducted to assess their virulence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!