A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the effect of salt-affected soil on water balance fluxes and nitrous oxide emission using modified DNDC. | LitMetric

Soil salinity restricts plant growth, affects soil water balance and nitrous oxide (NO) fluxes and can contaminate surface and groundwater. In this study, the Denitrification Decomposition (DNDC) model was modified to couple salt and water balance equations (SALT-DNDC) to investigate the effect of salinity on water balance and NO fluxes. The model was examined against four growing seasons (2008-11) of observed data from Lethbridge, Alberta, Canada. Then, the model was used to simulate water filled pore space (WFPS), salt concentration and the NO flux from agricultural soils. The results show that the effects of salinity on WFPS vary in different soil layers. Within shallow soil layers (<20 cm from soil surface) the salt concentration does not affect the average WFPS when initial salt concentrations range from 5 to 20 dS/m. However, in deeper soil layers (>20 cm from soil surface), when the initial salt concentration ranges from 5 to 20 dS/m it could indirectly affect the average WFPS due to changes of osmotic potential and transpiration. When AW is greater than 40%, the average growing season NO emissions increase to a range of 0.6-1.0 g-N/ha/d at initial salt concentrations (5-20 dS/m) from a range of 0.5-0.7 g-N/ha/d when the salt concentrations is 0 dS/m. The newly developed SALT-DNDC model provides a unique tool to help investigate interactive effects among salt, soil, water, vegetation, and weather conditions on NO fluxes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111678DOI Listing

Publication Analysis

Top Keywords

water balance
16
soil water
12
balance fluxes
8
nitrous oxide
8
salt concentration
8
soil layers
8
initial salt
8
salt concentrations
8
soil
7
water
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!