A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of ultrathin nanosheet subunits ZnInS hollow nanocages with enhanced photoelectric conversion for ultrasensitive photoelectrochemical sensing. | LitMetric

Design of ultrathin nanosheet subunits ZnInS hollow nanocages with enhanced photoelectric conversion for ultrasensitive photoelectrochemical sensing.

Biosens Bioelectron

Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong, 515041, PR China. Electronic address:

Published: March 2021

Herein, a high-efficiency photoactive material, hollow ZnInS nanocages (ZIS-HNCs) composed of ultrathin nanosheets were creatively synthesized via a metal-organic framework (MOF) derived solvothermal method. It had been specified the underlying mechanism of the ZIS-HNCs evolution under the MOF templated surface. Subsequently, the obtained ZIS-HNCs combined with annealing TiO modified electrode (ZIS-HNCs@TiO), and the ZIS-HNCs@TiO exhibited intense transient photocurrent. The enhanced photocurrent signal benefited from the multiple light capture effect of ZIS-HNCs, ultrathin nanosheet subunits of ZIS-HNCs, and typical type Ⅱ heterojunction, which could effectively retard the photoexcited electron-hole pairs recombination, and accelerated charge separation and transfer. Taking antibiotic lincomycin (Lin) as a model, a signal-off photoelectrochemical (PEC) aptasensor based on the ZIS-HNCs@TiO was established and manifested a high sensitive detection for Lin with a linear response range from 0.0001 to 0.1 nM as well as an ultralow detection limit of 0.084 pM. Additionally, the proposed PEC aptasensor showed acceptable stability and remarkable selectivity. Therefore, this study provides a promising strategy to design nanomaterials with superior photoelectric activity for PEC sensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2020.112873DOI Listing

Publication Analysis

Top Keywords

ultrathin nanosheet
8
nanosheet subunits
8
pec aptasensor
8
zis-hncs
5
design ultrathin
4
subunits znins
4
znins hollow
4
hollow nanocages
4
nanocages enhanced
4
enhanced photoelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!