Plasma treated graphene FET sensor for the DNA hybridization detection.

Talanta

School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China; Department of Electrical Engineering, University at Buffalo North Campus, Buffalo, NY, 14260, USA. Electronic address:

Published: February 2021

Room-temperature plasma treated graphene based FET was firstly proposed for the DNA hybridization detection. Affinity and electrical properties of the graphene based DNA-FET sensor were studied and improved benefits from the surface modification. The facile room-temperature Ar plasma easily removes residues from the graphene surface and changes the hydrophilic properties of graphene, which is important for our solution gated DNA-FET sensor. Limit of the detection of below 10 aM is obtained in our experiment. Especially, DNA concentration (C)/the amount of net drain current (ΔI) and the negative shift in the V value of the GFET sensor with the plasma treated 30 s are all improved compared with that without treatment. It shows that the easily plasma treatment of the graphene surface can be used for the solution gated FET sensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121766DOI Listing

Publication Analysis

Top Keywords

plasma treated
12
treated graphene
8
fet sensor
8
dna hybridization
8
hybridization detection
8
room-temperature plasma
8
graphene based
8
properties graphene
8
dna-fet sensor
8
graphene surface
8

Similar Publications

Diabetes is a chronic lifelong condition that requires consistent self-care and daily lifestyle adjustments. Effective disease management involves regular blood glucose monitoring and ongoing nursing support. Inadequate education and poor self-management are key factors contributing to increased mortality among diabetic individuals.

View Article and Find Full Text PDF

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.

View Article and Find Full Text PDF

Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.

View Article and Find Full Text PDF

Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!