Formalin-fixed paraffin-embedded (FFPE) tissues play an irreplaceable role in cancer research. Although extensive research has been conducted for the detection of DNA, RNA and proteins in FFPE samples, literature dealing with the FFPE determination of small molecules is scarce. In this study, we aimed to explore the potential of targeted metabolomics in FFPE specimens. For that purpose, we developed a LC-MS/MS method for the quantification of acidic metabolites in FFPE samples. The method involves trimming tissue slices from FFPE blocks, deparaffinization, lysis of the tissue, o-benzyl hydroxylamine derivatization and LC-MS/MS detection. Deparaffinization and lysis steps were optimized to maximize the analytes extraction and to minimize the effect of the ubiquitous presence of some metabolites in the paraffin. Two validation approaches were applied: (i) using blank paraffin as matrix and (ii) using actual human FFPE tissue samples by standard additions. The method quantified 40 metabolites with appropriate accuracy (commonly 80-120%) and precision (CV 2-19%) in both validation approaches. LLOQs ranging 0.88-2001 pg mg with low-moderate matrix effects (commonly 85-115%) were obtained. FFPE samples from 15 patients with colorectal cancer were analyzed and metabolites concentrations in tumor vs matched normal FFPE tissues were compared. Results show that tumor tissues have a well-established fingerprint including an increase in ketogenesis, a decrease in lipogenesis and an imbalance in the tricarboxylic acid cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121740DOI Listing

Publication Analysis

Top Keywords

ffpe samples
12
ffpe
9
targeted metabolomics
8
formalin-fixed paraffin-embedded
8
acidic metabolites
8
ffpe tissues
8
deparaffinization lysis
8
validation approaches
8
metabolites
5
metabolomics formalin-fixed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!