Background: Activating transcription factor 2 (ATF2), a member of the activator protein 1 (AP-1) transcription factor family, has been shown to be involved in the pathobiology of numerous cancers. However, the biological role and mechanism of ATF2 in lung adenocarcinoma (LUAD) remains to be elucidated.
Methods: The expression of ATF2, NEAT1 and miR-26a-5p in LUAD tissues and cell lines was detected by qRT-PCR and western blotting. The interaction between ATF2, NEAT1, and miR-26a-5p was validated by chromatin immunoprecipitation, luciferase reporter assay and RNA immunoprecipitation. Cell proliferation, invasion and tumorigenesis of LUAD cells were analyzed by using CCK8, transwell invasion assay and xenograft tumor model.
Results: We confirmed that ATF2 expression was increased in LUAD tissues compared with normal adjacent lung tissues. Functional experiments showed that ATF2 positively regulated cell proliferation and invasion in LUAD cells. Moreover, we identified that NEAT1 expression was increased in LUAD tissues and positively correlated with ATF2 expression. Mechanistically, ATF2 could bind to the promoter of NEAT1 to promote its transcription. Rescue experiments showed that ATF2 exerted its oncogenic function in LUAD, at least, partly through NEAT1 upregulation. In turn, NEAT1 could positively regulate ATF2 expression and form a positive feedback loop in LUAD cells. Furthermore, we demonstrated that NEAT1 positively regulated ATF2 expression via sponging miR-26a-5p.
Conclusion: ATF2 and NEAT1 form a positive feedback loop mediated by miR-26a-5p and coordinately contribute to LUAD progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727147 | PMC |
http://dx.doi.org/10.1186/s12935-020-01697-8 | DOI Listing |
Cell Death Differ
February 2022
Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu Province, China.
Aged bone marrow mesenchymal stem cells (BMSCs) exhibit aberrant self-renewal and lineage specification, which contribute to imbalanced bone-fat and progressive bone loss. In addition to known master regulators of lineage commitment, it is crucial to identify pivotal switches governing the specific differentiation fate of aged BMSCs. Here, we profiled differences in epigenetic regulation between adipogenesis and osteogenesis and identified super-enhancer associated lncRNA nuclear-enriched abundant transcript 1 (NEAT1) as a key bone-fat switch in aged BMSCs.
View Article and Find Full Text PDFCancer Cell Int
December 2020
Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xian, 710061, Shaanxi, China.
Background: Activating transcription factor 2 (ATF2), a member of the activator protein 1 (AP-1) transcription factor family, has been shown to be involved in the pathobiology of numerous cancers. However, the biological role and mechanism of ATF2 in lung adenocarcinoma (LUAD) remains to be elucidated.
Methods: The expression of ATF2, NEAT1 and miR-26a-5p in LUAD tissues and cell lines was detected by qRT-PCR and western blotting.
Nat Cell Biol
October 2018
State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!