Background: Protein phosphoglycerylation, the addition of a 1,3-bisphosphoglyceric acid (1,3-BPG) to a lysine residue of a protein and thus to form a 3-phosphoglyceryl-lysine, is a reversible and non-enzymatic post-translational modification (PTM) and plays a regulatory role in glucose metabolism and glycolytic process. As the number of experimentally verified phosphoglycerylated sites has increased significantly, statistical or machine learning methods are imperative for investigating the characteristics of phosphoglycerylation sites. Currently, research into phosphoglycerylation is very limited, and only a few resources are available for the computational identification of phosphoglycerylation sites.
Result: We present a bioinformatics investigation of phosphoglycerylation sites based on sequence-based features. The TwoSampleLogo analysis reveals that the regions surrounding the phosphoglycerylation sites contain a high relatively of positively charged amino acids, especially in the upstream flanking region. Additionally, the non-polar and aliphatic amino acids are more abundant surrounding phosphoglycerylated lysine following the results of PTM-Logo, which may play a functional role in discriminating between phosphoglycerylation and non-phosphoglycerylation sites. Many types of features were adopted to build the prediction model on the training dataset, including amino acid composition, amino acid pair composition, positional weighted matrix and position-specific scoring matrix. Further, to improve the predictive power, numerous top features ranked by F-score were considered as the final combination for classification, and thus the predictive models were trained using DT, RF and SVM classifiers. Evaluation by five-fold cross-validation showed that the selected features was most effective in discriminating between phosphoglycerylated and non-phosphoglycerylated sites.
Conclusion: The SVM model trained with the selected sequence-based features performed well, with a sensitivity of 77.5%, a specificity of 73.6%, an accuracy of 74.9%, and a Matthews Correlation Coefficient value of 0.49. Furthermore, the model also consistently provides the effective performance in independent testing set, yielding sensitivity of 75.7% and specificity of 64.9%. Finally, the model has been implemented as a web-based system, namely iDPGK, which is now freely available at http://mer.hc.mmh.org.tw/iDPGK/ .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727188 | PMC |
http://dx.doi.org/10.1186/s12859-020-03916-5 | DOI Listing |
Microorganisms
July 2024
Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany.
Phosphoglycerylation is a non-enzymatic protein modification in which a phosphoglyceryl moiety is covalently bound to the ε-amino group of lysine. It is enriched in glycolytic enzymes from humans and mice and is thought to provide a feedback mechanism for regulating glycolytic flux. We report the first proteomic analysis of this post-translational modification in bacteria by profiling phosphoglyceryl-lysine during the growth of in different culture media.
View Article and Find Full Text PDFBrief Bioinform
September 2022
Dept. of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh.
A newly invented post-translational modification (PTM), phosphoglycerylation, has shown its essential role in the construction and functional properties of proteins and dangerous human diseases. Hence, it is very urgent to know about the molecular mechanism behind the phosphoglycerylation process to develop the drugs for related diseases. But accurately identifying of phosphoglycerylation site from a protein sequence in a laboratory is a very difficult and challenging task.
View Article and Find Full Text PDFPLoS One
September 2021
Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh.
Post-translational modification (PTM) involves covalent modification after the biosynthesis process and plays an essential role in the study of cell biology. Lysine phosphoglycerylation, a newly discovered reversible type of PTM that affects glycolytic enzyme activities, and is responsible for a wide variety of diseases, such as heart failure, arthritis, and degeneration of the nervous system. Our goal is to computationally characterize potential phosphoglycerylation sites to understand the functionality and causality more accurately.
View Article and Find Full Text PDFGenes (Basel)
December 2020
Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
Background: Post-translational modification (PTM) is a biological process that is associated with the modification of proteome, which results in the alteration of normal cell biology and pathogenesis. There have been numerous PTM reports in recent years, out of which, lysine phosphoglycerylation has emerged as one of the recent developments. The traditional methods of identifying phosphoglycerylated residues, which are experimental procedures such as mass spectrometry, have shown to be time-consuming and cost-inefficient, despite the abundance of proteins being sequenced in this post-genomic era.
View Article and Find Full Text PDFBMC Bioinformatics
December 2020
Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
Background: Protein phosphoglycerylation, the addition of a 1,3-bisphosphoglyceric acid (1,3-BPG) to a lysine residue of a protein and thus to form a 3-phosphoglyceryl-lysine, is a reversible and non-enzymatic post-translational modification (PTM) and plays a regulatory role in glucose metabolism and glycolytic process. As the number of experimentally verified phosphoglycerylated sites has increased significantly, statistical or machine learning methods are imperative for investigating the characteristics of phosphoglycerylation sites. Currently, research into phosphoglycerylation is very limited, and only a few resources are available for the computational identification of phosphoglycerylation sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!