Delayed peroneal reaction time and impaired single-legged dynamic stability were risk factors of lateral ankle sprain (LAS), yet no study explored the change of them during a football match. The aim is to explore the change of peroneal reaction time and single-legged dynamic stability during a football simulation protocol. Twelve collegiate football players voluntarily completed a 105-min football match simulation protocol in which peroneal reaction time, root-mean-square of mediolateral ground reaction force in first 0.4 s (RMS ML 0.4), and the mean mediolateral ground reaction force in the late stage (late dynamic MLGRF), were measured for both legs at 15-min intervals during the protocol. Peroneal reaction time was tested using an electromyography (EMG) system. The ground reaction force variables were measured from GRF data after a single-legged drop-jump landing. Repeated measures one-way MANOVA was conducted to evaluate variables over time and leg dominance. Statistical significance was set at < 0.05 level. Peroneal reaction time significantly increased for both legs at 45 minutes and after 60 minutes. RMS ML 0.4 of both legs and late dynamic MLGRF for dominant leg remained unchanged throughout the protocol and late dynamic MLGRF for non-dominant leg significantly reduced at the 90th minute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15438627.2020.1857251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!