Thioredoxins (Trxs) function within the antioxidant network through modulation of one or more redox reactions involved in oxidative-stress signaling. Given their function in regulating cellular redox, Trx proteins also fulfill key roles in plant immune signaling. Here, , encoding a subgroup member of the Trx family, was identified and cloned in wheat (), which was rapidly induced by f. sp. invasion and salicylic acid (SA) treatment. Overexpression of in tobacco () induced programmed cell death. Silencing of in wheat enhanced susceptibility to f. sp. in different aspects, including reactive oxygen species accumulation and pathogen-responsive or -related gene expression. Herein, we observed that the cellular concentration of SA was significantly reduced in -silenced plants, indicating that possibly regulates wheat resistance to stripe rust through a SA-associated defense signaling pathway. Using a yeast two-hybrid screen to identify TaTrxh1-interacting partners, we further show that interaction with TaCP1 (a RD19-like cysteine protease) and subsequent silencing of reduced wheat resistance to f. sp. . In total, the data presented herein demonstrate that enhances wheat resistance against f. sp. via SA-dependent resistance signaling and that TaTrxh1 interaction with TaCP1 is required for wheat resistance to stripe rust.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-11-20-0304-R | DOI Listing |
Plant Dis
January 2025
Northwest A&F University, College of Plant Protection, xinong road 22,Yangling, Shaanxi,, PO box, 13#, Yangling, Shaanxi, China, 712100;
Wheat stripe rust, caused by f. sp. (), poses a significant threat to wheat production, particularly in Henan province, which produces more than 36 million tons of wheat grain every year, the highest production among all provinces in China.
View Article and Find Full Text PDFFront Microbiol
December 2024
School of Biosciences and Technology, Vellore Institute of Technology SBST, Vellore, Tamil Nadu, India.
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Research Center for Agroindustry, National Research and Innovation Agency, KST Soekarno, Cibinong 16911, Indonesia.
Plant Genome
March 2025
CREA - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda (PC), Italy.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA.
Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!