Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762413 | PMC |
http://dx.doi.org/10.3390/cells9122630 | DOI Listing |
Zoology (Jena)
January 2025
Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India. Electronic address:
Teleost fish, such as Poecilia latipinna, exhibit remarkable regenerative capabilities, making them excellent models for studying tissue regrowth. They regenerate body parts like the tail fin through epimorphic regeneration, involving wound healing, blastema formation (a pool of proliferative cells), and tissue differentiation. Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) signaling pathways play crucial roles in this process, but their specific functions during blastema formation remain unclear.
View Article and Find Full Text PDFTalanta
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:
The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.
View Article and Find Full Text PDFMech Ageing Dev
January 2025
Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!