This work presents an innovative application of carbon dots (Cdots) nanoparticles as sensing layer for relative humidity detection. The developed sensor is based on interdigitated capacitive electrodes screen printed on a flexible transparent polyethylene terephthalate (PET) film. Cdots are deposited on top of these electrodes. An exhaustive characterization of the nanoparticles has been conducted along with the fabrication of the sensor structure. The accompanied experiments give all the sensibility to the Cdots, showing its dependence with temperature and exciting frequency. To the best of our knowledge, this work paves the path to the use of these kind of nanoparticles in printed flexible capacitive sensors aimed to be employed in the continuously expanding Internet of Things ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762300PMC
http://dx.doi.org/10.3390/nano10122446DOI Listing

Publication Analysis

Top Keywords

carbon dots
8
sensing layer
8
printed flexible
8
dots sensing
4
layer printed
4
printed humidity
4
humidity temperature
4
temperature sensors
4
sensors work
4
work presents
4

Similar Publications

Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

Masked cryptic kidney injury (MCKI), an early stage of acute kidney injury (AKI), is challenging to detect and diagnose, especially in the modern context where toxic substances, such as surfactants, are increasingly misused. Consequently, there is an urgent need for methods for the visual diagnosis of MCKI. In this study, we synthesized environmentally friendly spirulina-derived carbon dots (SpiCDs) using spirulina as a biobased raw material through a simple hydrothermal process.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!