Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prenatal exposure to persistent organic pollutants (POPs) has been a matter of particular concern because such exposure can severely affect the health of the fetus. The mechanistic understanding of the partitioning behavior of POPs in the feto-maternal system and the associated factors, however, have rarely been studied. Here, we employed a new approach based on multiple linear regression (MLR) analysis to predict the feto-maternal ratio (FM-ratio) of POPs and to assess the factors associated with feto-maternal partitioning behavior. Two preliminary exploratory MLR models were built using physiological conditions of the participants, and molecular descriptors were calculated with a computational model. The FM-ratio was calculated from the concentrations of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs) in 20 pairs of maternal and cord blood. The models showed that the lipids and cholesterols in the maternal and cord blood and the placenta significantly influence the partitioning of POPs. The body mass index (BMI) change during pregnancy was also related to the FM-ratio. The physicochemical properties associated with lipophilicity and molecular size were also related to the FM-ratio. Even though the results should be interpreted with caution, the preliminary MLR models illustrate that feto-maternal partitioning is governed by transplacental transporting mechanisms, toxicokinetics, and the molecular physicochemical properties of POPs. Overall, the new approach used in this study can improve our understanding of the partitioning behavior in the feto-maternal system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!