Trace elements and heavy metals concentrate in aquatic sediments, potentially endangering benthic organisms. Comparing the concentration of metals in different aquatic bodies will help evaluate their accumulation and distribution characteristics within these systems. Metal pollution and enrichment indices in sediments from diverse aquatic systems in Southern USA, including agricultural ponds, man-made reservoir, river, swamp, and coastal environment were investigated. Following total digestion of the sediments, the concentrations of chromium (Cr), cobalt (Co), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), antimony (Sb), lead (Pb), and uranium (U) were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Pb was found to be highly enriched in the sediment samples from all five environments. The samples from coastal and agricultural ponds showed highest degree of anthropogenic modification (enrichment factor >10), especially with Se, U, and Pb. Agricultural ponds, previously unknown as a metal hotspot, had the most deteriorated sediment quality as determined by high pollution load index (>1) and contamination factor (>6) for Cd and U. Principal component analysis comparing land use land cover distribution surrounding the aquatic systems to metal concentrations confirmed that agriculture-related land activities correlated well with majority of the metals. Overall, compared to agricultural ponds and coastal regions, sediments in river, swamp and man-made reservoir systems contained relatively fewer metal pollutants, the former two serving as collection points for metal-laden fertilizers and chemicals. The research provides key insights into simultaneously comparing metal accumulation in multiple water bodies and is useful to test and develop effective sediment quality guidelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!