A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars. | LitMetric

Soil cadmium (Cd) contamination has become a massive environmental problem. Kenaf is an industrial fiber crop with high tolerance to heavy metals and could be potentially used for soil phytoremediation. However, the molecular mechanism of Cd in kenaf tolerance remains largely unknown. In the present study, using two contrasting Cd sensitive kenaf (GH and YJ), the key factors accounting for differential Cd tolerance were investigated. GH has a stronger Cd transport and accumulation ability than YJ. In addition, physiological index investigation on malondialdehyde (MDA) contents and antioxidant enzyme (SOD, POD, and CAT) activities showed GH has a stronger detoxification capacity than YJ. Furthermore, the cell ultrastructure of GH is more stable than that of YJ under Cd stress. Transcriptome analysis revealed 2221 (689 up and 1532 down) and 3321 (2451 up and 870 down) genes were differentially expressed in GH and YJ, respectively. More DEGs (differentially expressed genes) were characterized as up-regulated in GH, indicating GH is inclined to activate gene expression to cope with cadmium stress. GO and KEGG analyses indicate that DEGs were assigned and enriched in different pathways. Plenty of critical Cd-induced DEGs such as SOD2, PODs, MT1, DTXs, NRT1, ABCs, CES, AP2/ERF, MYBs, NACs, and WRKYs were identified. The DEGs involved pathways, including antioxidant, heavy metal transport or detoxification, substance transport, plant hormone and calcium signals, ultrastructural component, and a wide range of transcription factors were suggested to play crucial roles in kenaf Cd tolerance, and accounting for the difference in Cd stress sensitivities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128211DOI Listing

Publication Analysis

Top Keywords

kenaf tolerance
8
differentially expressed
8
tolerance
5
kenaf
5
comparative transcriptomic
4
transcriptomic analysis
4
analysis reveals
4
reveals key
4
key genes
4
genes pathways
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!