With the rapid rate of industrialization, the emission of effluents represents a serious threat to aquatic living organisms and the environment. Semiconductor-mediated photocatalysis has been highlighted as the most attractive technology for the elimination of pollutants. In this connection, bandgap-tuned ultra-small SnO-nanoparticle-decorated 2D-BiWO nanoplates were prepared via the hydrothermal method. The tuning of the bandgap was altered by the thermal annealing procedure. Moreover, we investigated the influence of different bandgaps of SnO on the anchoring of the 2D-BiWO nanoplates and studied their photocatalytic activity through the degradation of Rhodamine B under visible light irradiation. The ultra-small SnO nanoparticles were highly anchored on the surface of the 2D-BiWO plates, which resulted in more photon harvesting, improved charge separation, the transfer of photoinduced charge carriers, and the alteration of band positions towards the visible region of light. Furthermore, the anchored SnO nanoparticles improved the performance of the photocatalytic activity of 2D-BiWO nanoplates by more than 2.7 times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128185 | DOI Listing |
J Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Porphyrin-based two-dimensional porous materials (SnP-H2TCPP, SnP-ZnTCPP) composed of robust Sn(IV)-porphyrin linkages have been synthesized by reacting -dihydroxo[5,10,15,20-tetraphenylporphyrinato]tin(IV) (SnP) with [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] (HTCPP) and [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]zinc(II) (ZnTCPP), respectively. The strength of the interaction between the carboxylic acid group of the monomeric porphyrins (HTCPP and ZnTCPP) and the axial hydroxyl moiety of SnP enables the construction of highly stable framework materials, which were characterized by FT-IR, UV-vis, and emmission spectroscopy, powder XRD, elemental analysis, and thermogravimetric analysis (TGA). SnP-H2TCPP and SnP-ZnTCPP absorb visible light strongly over a wide range, demonstrating weak perturbation in the electronic ground state structures of the π-conjugated aromatic moieties compared to the starting monomeric units.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere.
View Article and Find Full Text PDFChemistry
December 2024
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, CHINA.
Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Materials Science, Fudan University Shanghai 200433 China
A cation exchange (CE) reaction offers a remarkable opportunity to create versatile metal sulfide nanocrystals (NCs) with arbitrary complexity in composition, structure, and functionality. The concept of regioselectivity has been discovered and developed to build the target heterostructures through CE reactions, yet a general principle of regioselectivity remains unclear. In this work, we establish connections between experimental results and theoretical insights to elucidate the determinants of regioselectivity using designed aliovalent CE reactions on a two-dimensional template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!