Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The construction of efficient and superior adsorbed materials for the precise removal of hazardous contaminants from water have gained significant attention by the scientific community. In this work, a facile bimetallic zeolitic-imidazolate framework (CoZn-JUC-160) by using self-adjusted strategy (SAS) was developed to synthesize various N-doped Co-based hierarchical porous carbon composites through sacrificial template route. A series of highly porous magnetic materials with well-dispersed or reduced Co particle size have been fabricated by fine tuning the ratio of Co and Zn in the precursors. For the first time the effect of the Co/Zn ratio on the textural properties and drug adsorption performance of the resultant porous carbon composites have been investigated systematically. Remarkably, the optimal Co@NC-1/4-900 possesses large specific surface area, hierarchical pore structures, and well-distributed Co adsorption sites which facilitates the exposure of active Co center and realizes fast diffusion of amodiaquine (ADQ) molecules with record-high adsorption capacities (890.23 mg g). The presented synthetic strategy provides deep insights into the development of highly efficient recyclable magnetic adsorbent for the removal of contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!