Electrodisinfection of bacteria-laden in surface water using modified Ti electrode by antimony-and nickel-doped tin oxide composite.

Chemosphere

Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.

Published: January 2021

Providing clean and safe drinking water by point of use (POU) disinfection methods has become a critical issue, especially in crises and epidemics. In this study, antimony-and nickel-doped tin oxide electrode (Ni-Sb-SnO) was employed as an electrode for electro-catalytic disinfection of surface water. The synthetized electrodes were characterized using scanning electron microscope, linear sweep voltammetry and X-Ray diffraction techniques. The results revealed that the highest electrochemical disinfection efficiency was achieved by the Ni-Sb-SnO electrode under weak acidic conditions and its performance decreased with increasing pH towards alkaline environment. Based on the results, total coliform (TC) and fecal coliform (FC) were completely removed at current density of 0.67 mA cm. Moreover, the electrochemical disinfection of microorganisms showed that the process efficiency was directly proportional to increasing time and at 0.6 C cm of charge passed, 3-log removal of the both indicators occurred after 15 min. The highest removal efficiency of TC and FC was also achieved at 8 mmol of NaCl concentration at <10 min of detention time. The results of this study depicted that the Ti/Ni-Sb-SnO electrode provides higher disinfection efficiency for the removal of TC and FC compared with Ti and SS/PbO electrodes. Moreover, the proposed system was able to completely eliminate heterotrophic, Streptococcus faecalis and Pseudomonas aerogenes indicators under optimal conditions. Therefore, it can be concluded that the proposed electrochemical system can be efficiency applied as a POU disinfection system for disinfection of water contaminated with microbial indicators, especially for crises and epidemics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.127761DOI Listing

Publication Analysis

Top Keywords

surface water
8
antimony-and nickel-doped
8
nickel-doped tin
8
tin oxide
8
electrochemical disinfection
8
efficiency achieved
8
electrodisinfection bacteria-laden
4
bacteria-laden surface
4
water modified
4
electrode
4

Similar Publications

Moisture-driven carbonation kinetics for ultrafast CO mineralization.

Proc Natl Acad Sci U S A

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.

View Article and Find Full Text PDF

Precipitation recycling, where evapotranspiration (ET) from the land surface contributes to precipitation within the same region, is a critical component of the water cycle. This process is especially important for the US Corn Belt, where extensive cropland expansions and irrigation activities have significantly transformed the landscape and affected the regional climate. Previous studies investigating precipitation recycling typically relied on analytical models with simplifying assumptions, overlooking the complex interactions between groundwater hydrology and agricultural management.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αβ integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)-Mito-MIMs-TPP are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!