For the target-tracking problem, full state of the target may not be available since it may be expensive or impossible to obtain. Thus, the state needs to be reconstructed or estimated only according to measured inputs and outputs. The impossible case that all followers can measure the target directly yields the study of distributed methods, thus reducing the communication and computation resource while resulting in more robustness. This article confronts these problems by addressing a distributed iterative finite impulse response (DIFIR) consensus filter for leader-following systems. A solution to the underlying problem is obtained by involving a distributed measurement model wherein not only the neighbors' estimates are applied but also the directed measurement data are used, and expressed by a computationally efficient iterative algorithm. Applying this DIFIR strategy, it is shown that the leader's estimates by all followers reach H consensus, whose value is the local unbiased estimates of the leader. Then, the result is extended to multiagent systems whose leader has unknown inputs. Incorporating the input estimates, a new DIFIR is proposed. Finally, examples are given to illustrate the consistency and robustness of the developed new design techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2020.3035866DOI Listing

Publication Analysis

Top Keywords

distributed iterative
8
consensus filter
8
multiagent systems
8
distributed
4
iterative fir
4
fir consensus
4
filter multiagent
4
systems sensor
4
sensor networks
4
networks target-tracking
4

Similar Publications

Recently, deep latent variable models have made significant progress in dealing with missing data problems, benefiting from their ability to capture intricate and non-linear relationships within the data. In this work, we further investigate the potential of Variational Autoencoders (VAEs) in addressing the uncertainty associated with missing data via a multiple importance sampling strategy. We propose a Missing data Multiple Importance Sampling Variational Auto-Encoder (MMISVAE) method to effectively model incomplete data.

View Article and Find Full Text PDF

Optimal placement of high-channel visual prostheses in human retinotopic visual cortex.

J Neural Eng

January 2025

Faculty of Psychology, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Maastricht, 6211 LK, NETHERLANDS.

Recent strides in neurotechnology show potential to restore vision in individuals afflicted with blindness due to early visual pathway damage. As neuroprostheses mature and become available to a larger population, manual placement and evaluation of electrode designs becomes costly and impractical. An automatic method to optimize the implantation process of electrode arrays at large-scale is currently lacking.

View Article and Find Full Text PDF

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

A National Synthetic Populations Dataset for the United States.

Sci Data

January 2025

RTI International, 3040 Cornwallis Rd., P.O. Box 12194, Research Triangle Park, NC, 27709, USA.

Geospatially explicit and statistically accurate person and household data allow researchers to study community-and neighborhood-level effects and design and test hypotheses that would otherwise not be possible without the generation of synthetic data. In this article, we demonstrate the workflow for generating spatially explicit household- and individual-level synthetic populations for the United States representing the year 2019. We use publicly available U.

View Article and Find Full Text PDF

In this paper, a novel particle filter based on one-step smoothing is proposed for nonlinear systems with random one-step delay and missing measurements. Such problems are commonly encountered in networked control systems, where random one-step delay and missing measurements significantly increase the difficulty of dynamic state estimation. The particle filter is a nonlinear filtering method based on sequential Monte Carlo sampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!