Surgical resection is the first-line therapy for colorectal cancer (CRC). However, for advanced CRC, the curative effect of surgical resection is limited due to either local recurrence or distal metastasis. Postoperative in situ immunotherapy, presents a promising option for preventing tumor recurrence and metastasis, owing to the fact that surgeons have unique opportunities and direct access to the surgical site. Herein, a designed biopolymer immune implant for CRC post-surgical therapy, characterized with tissue adhesion, sustained drug release, and sequential elicitation of innate immunity, adaptive immunity, and immune memory effects, is reported. With gradual release of the loaded resiquimod (R848) and anti-OX40 antibody (aOX40), the immune implant can eradicate residual tumors post-surgery (with no tumor recurrence in 150 days), inhibit the growth of distal tumors and elicit immune memory effects to resist tumor re-challenge. Immunological analysis reveal that the biopolymer immune plant treatment leads to a two-stage action, with enhanced natural killer cells (NK cells) infiltration and activation of dendritic cells (DCs) in the first several days, then a greatly increased population of infiltrating T cells, and finally immune memory effects are established. The reported biopolymer immune implants provide a valuable and clinically-relevant option for post-surgical CRC management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202004559DOI Listing

Publication Analysis

Top Keywords

biopolymer immune
16
immune memory
12
memory effects
12
adaptive immunity
8
colorectal cancer
8
surgical resection
8
tumor recurrence
8
immune implant
8
immune
7
biopolymer
4

Similar Publications

When the kidneys are injured, uremic toxins (UTXs) accumulate in the body, affecting other tissues and causing a loss of essential body functions. This study investigated the adsorption of blood plasma-laden UTXs on the surface of PCL fibers to assess their potential as an alternative to membrane dialysis materials. Using plasma containing 26 UTXs at a concentration similar to that found in end-stage kidney disease patients, we analyzed the adsorbed proteins and examined clot formation in normal and toxin-treated plasma in the presence of PCL fibers.

View Article and Find Full Text PDF

Background: For clinical implementation of Alzheimer's disease (AD) blood-based biomarkers (BBMs), knowledge of short-term variability, is crucial to ensure safe and correct biomarker interpretation, i.e., to capture changes or treatment effects that lie beyond that of expected short-term variability and considered clinically relevant.

View Article and Find Full Text PDF

Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

Currently, deacetylated chitin (chitosan) nanoparticles (CNPs) are successfully utilized in aquaculture practices. This trial demonstrates the efficacy of CNPs in combating diazinon (DZN) toxicity in African catfish, Clarias gariepinus, via monitoring hepato-renal function, serum immune trait, hormonal function, and hepato-renal antioxidant activity. Four groups were allocated as follows: a control group, a CNPs group (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!