Purpose: To describe and evaluate a method for calculating intraocular lens (IOL) power in the second operative eye of patients with a history of keratorefractive surgery.

Methods: All eyes had undergone cataract surgery by a single surgeon from 2015 to 2018. Postoperative outcomes on the first eye (eg, IOL power implanted and postoperative refractive error) were used to back calculate a "Real K" for the first eye. The difference (delta) between the second and first eye topographic simulated keratometry values was then added to the first eye Real K to calculate the second eye Real K. This Real K value was inputted into the Holladay IOL Consultant software as an "alternate K" to derive an accurate IOL power for the second eye. Mean absolute error, mean error, and percentage of eyes on target using the Delta K method were compared with results obtained with intraoperative abserrometry and the Haigis-L and Barrett True-K No History formulas.

Results: The mean error for the Delta K method was significantly better than the Haigis-L (P = .00001) and Barrett True-K No History (P = .027) formulas, and on par with intra-operative aberrometry (P = .25). The mean absolute error of the Delta K method was significantly better than the Haigis-L formula (P = .03). The Delta K mean absolute error was on par with intraoperative aberrometry (P = .81) and the Barrett True-K No History formula (P = .56).

Conclusions: The Delta K mean absolute error is comparable to the Barrett True-K No History formula. The mean error is lower than that calculated with the Barrett True-K No History formula and comparable to intraoperative aberrometry. [J Refract Surg. 2020;36(12):826-831.].

Download full-text PDF

Source
http://dx.doi.org/10.3928/1081597X-20200914-01DOI Listing

Publication Analysis

Top Keywords

barrett true-k
20
true-k history
20
iol power
16
second eye
16
absolute error
16
delta method
12
history formula
12
eye
8
eye patients
8
power second
8

Similar Publications

Purpose: To compare the refractive prediction accuracy of the Optiwave Refractive Analysis (ORA) SYSTEM with the Barrett True-K (BTK) formula in calculating intraocular lens (IOL) power in eyes that underwent cataract surgery after previous myopic photorefractive keratectomy (PRK) or laser-assisted in situ keratomileusis (LASIK).

Methods: This retrospective study evaluated patients aged ≥22 years with prior myopic PRK or LASIK who underwent unilateral or bilateral cataract removal and monofocal IOL implantation using the ORA SYSTEM at 177 sites in the United States. Two datasets were analyzed: All Eyes (ie, all eligible eyes) and First Surgery Eyes (ie, each patient's first implanted eye).

View Article and Find Full Text PDF

Background: Accurate intraocular lens (IOL) calculation in eyes with keratoconus (KCN) poses significant challenges. While various formulas, including KCN-specific ones, have been investigated, the optimal calculation method remains inconclusive.

Methods: The study was pre-registered in PROSPERO (CRD42023483119).

View Article and Find Full Text PDF

Total keratometry versus standard keratometry for intraocular lens power calculation in eyes with keratoconus.

Int Ophthalmol

November 2024

Anterior Segment Surgery Department, Asociación Para Evitar La Ceguera en México I.A.P., Vicente García Torres 46, Barrio San Lucas, CP 04030, Coyoacán, Mexico City, Mexico.

Purpose: To describe the accuracy of monofocal intraocular lens power calculation in patients with keratoconus using total keratometry (TK) and standard keratometry (K) with conventional and keratoconus-modified formulas.

Setting: Asociación Para Evitar la Ceguera en México, Mexico City, Mexico.

Design: Observational, retrospective, non-randomized, comparative study.

View Article and Find Full Text PDF

This retrospective study compared postoperative prediction errors of recent formulas using standard- or total keratometry (K or TK) for intraocular lens (IOL) power calculation in post-myopic LASIK patients. It included 56 eyes of 56 patients who underwent uncomplicated cataract surgery, with at least 1-month follow-up at Keio University Hospital in Tokyo or Hayashi Eye Hospital in Yokohama, Japan. Prediction errors, absolute errors, and percentage of eyes with prediction errors within ± 0.

View Article and Find Full Text PDF

Background: To compare the accuracy of intraoperative wavefront aberrometry using the ORA VLynk system with different biometry-based formulas in short and long eyes after cataract surgery.

Methods: This prospective study considered 48 eyes with axial lengths of <22.1 mm and 48 eyes with axial lengths of >25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!