52.14.229.130=52.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=33295773&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490852.14.229.130=52.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=retinal&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490852.14.229.130=52.14
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a82b89914b7d809da27&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge. | LitMetric

Enhanced Delivery of siRNA to Retinal Ganglion Cells by Intravitreal Lipid Nanoparticles of Positive Charge.

Mol Pharm

Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China.

Published: January 2021

RNAi therapy has been developed and explored for treating retinal conditions since last decades. The progression of retinal diseases including the age-related macular degeneration and glaucoma is associated with the malfunction of specific retinal cells. Therefore, to deliver therapeutic RNAi to selective retinal tissues with desired gene downregulation is crucial for the treatment of retinal diseases RNAi therapy. Lipid-based nanoparticles are potent delivery vectors for RNAi therapeutics to achieve high gene silencing efficiency. The surface charge has been demonstrated to affect the intraocular behaviors and retinal distribution of intravitreally administered lipid nanoparticles (LNPs), which could subsequently affect the gene knockdown efficiency in specific retinal layers. Here, we evaluated three charged LNPs for their ability to deliver siRNA and facilitate gene downregulation both and . LNPs with different surface charges ranging from neutral to positive (5-34 mV) were successfully formulated. All types of charged LNPs managed gene knockdown in both mammalian cell line and primary neurons. At 48 h post intravitreal injection, neutral LNPs (6.2 mV) and mildly positive LNPs (15.9 mV) mediated limited retinal gene suppression (<10%) and the more positive LNPs (31.2 mV) led to ∼25% gene suppression in the retinal ganglion cell (RGC) layer. No gene silencing in the retinal pigmented epithelium layer was facilitated by any LNPs independent of the charges. In summary, this study has shown that positive LNPs with an optimized charge managed specific gene downregulation in the RGC layer. These RNAi carriers hold potential for the treatment of RGC-associated retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00992DOI Listing

Publication Analysis

Top Keywords

retinal
9
lipid nanoparticles
8
rnai therapy
8
retinal diseases
8
specific retinal
8
gene downregulation
8
gene knockdown
8
charged lnps
8
gene
6
lnps
6

Similar Publications

Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).

Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.

View Article and Find Full Text PDF

The relationship between retinal fundus hemorrhage and the severity of coronary artery lesions remains unclear. This study aimed to explore the incidence of fundus hemorrhage in patients at high risk of coronary heart disease (CHD) and to examine its correlation with the SYNTAX score, a tool used to assess the complexity of coronary artery disease. This retrospective study consecutively enrolled patients undergoing coronary angiography (CAG) at Beijing Anzhen Hospital Hospital from June 2019 to January 2020.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

The SARS-CoV-2 infection manifests with diverse clinical manifestations, with severity potentially influenced by the viral variant. COVID-19 has also been shown to impact ocular microcirculation in some patients, but whether this effect varies by viral lineage remains unclear. This prospective study compared clinical features and ocular parameters assessed via optical coherence tomography angiography (OCTA) in patients recovering from SARS-CoV-2 infections during the dominance of two distinctive viral lineages, Alpha (B.

View Article and Find Full Text PDF

Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model.

Pharmaceutics

January 2025

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

Background/objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!