Neurological disorders significantly outnumber diseases in other therapeutic areas. However, developing drugs for central nervous system (CNS) disorders remains the most challenging area in drug discovery, accompanied with the long timelines and high attrition rates. With the rapid growth of biomedical data enabled by advanced experimental technologies, artificial intelligence (AI) and machine learning (ML) have emerged as an indispensable tool to draw meaningful insights and improve decision making in drug discovery. Thanks to the advancements in AI and ML algorithms, now the AI/ML-driven solutions have an unprecedented potential to accelerate the process of CNS drug discovery with better success rate. In this review, we comprehensively summarize AI/ML-powered pharmaceutical discovery efforts and their implementations in the CNS area. After introducing the AI/ML models as well as the conceptualization and data preparation, we outline the applications of AI/ML technologies to several key procedures in drug discovery, including target identification, compound screening, hit/lead generation and optimization, drug response and synergy prediction, de novo drug design, and drug repurposing. We review the current state-of-the-art of AI/ML-guided CNS drug discovery, focusing on blood-brain barrier permeability prediction and implementation into therapeutic discovery for neurological diseases. Finally, we discuss the major challenges and limitations of current approaches and possible future directions that may provide resolutions to these difficulties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043990 | PMC |
http://dx.doi.org/10.1002/med.21764 | DOI Listing |
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFFront Genet
December 2024
School of information engineering, Jingdezhen Ceramic University, Jingdezhen, China.
The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.
View Article and Find Full Text PDFFront Neurosci
December 2024
The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada.
This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.
View Article and Find Full Text PDFJ Trop Med
December 2024
Department of Infectious Disease, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
After the global impact of the COVID-19 pandemic, concerns over virus transmission have risen. A state of health emergency was declared in 2022 due to Clade 2 of the monkeypox (MPOX) virus. In August 2024, another emergency was declared by the World Health Organization (WHO) because of the widespread Clade 1b, which caused a more severe and lethal disease.
View Article and Find Full Text PDFJ Clin Transl Endocrinol
December 2024
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy.
Thanks to the identification of crucial molecular pathways, the therapeutic landscape for advanced differentiated thyroid tumors (DTCs) has significantly improved during the last ten years. The therapeutic scenario has been greatly impacted by the discovery of mutually exclusive gene changes in the MAPK and PI3K/AKT pathways, such as or fusions and pathogenic mutations of the and genes. Indeed, multi-kinase inhibitors and selective inhibitors have demonstrated outstanding efficacy for radioactive iodine-refractory (RAI-R) drug treatment, with overall response rates reaching up to 86%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!