Bismuthene has opened up a new avenue in the field of nanotechnology because of its spectacular electronic and thermoelectric features. The strong spin-orbit-coupling enables its operation as the largest nontrivial bandgap topological insulator and quantum spin hall material at room temperature, which is unlikely for any other 2D material. It is also known to be the most promising thermoelectric material due to its remarkable thermoelectric properties, including a substantially high power factor. However, an in-depth understanding of the mechanical and thermal transport properties of bismuthene is crucial for its practical implementation and efficient operation. Employing the Stillinger-Weber potential, we utilized molecular dynamics simulations to inspect the mechanical strength and thermal conductivity of the monolayer β-bismuthene for the first time. We analyzed the effect of temperature on the tensile mechanical properties along the armchair and zigzag directions of bismuthene nanosheets and found that increasing temperature causes a significant deterioration in these properties. The material shows superior fracture resistance with zigzag loading, whereas the armchair direction exhibits an improved elasticity. Next, we showed that increasing vacancy concentration and crack length notably reduce the fracture stress and strain of β-bismuthene. Under all these conditions, β-bismuthene showed a strong chirality effect under tensile loading. We also explored the fracture phenomena of a pre-cracked β-bismuthene, which reveal that the armchair-directed crack possesses a higher fracture resistance than the zigzag-directed crack. Interestingly, branching phenomena occurred during crack propagation for the armchair crack; meanwhile, the crack propagates perpendicular to loading for the zigzag crack. Afterward, we investigated the effect of loading rate on the fracture properties of bismuthene along the armchair and zigzag directions. Finally, we calculated the thermal conductivity of bismuthene under the influence of temperature and vacancy and recorded a substantial decrement in thermal conductivity with increasing temperature and vacancy. The obtained results are comprehensively discussed in the light of phonon density of states, phonon dispersion spectrum, and phonon group velocities. It is also disclosed that the thermal conductivity of β-bismuthene is considerably lower than that of other analogous honeycomb structures. This study can add a new dimension to the successful realization of bismuthene in future (opto)electronic, spintronic, and thermoelectric devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04785fDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
16
monolayer β-bismuthene
8
properties bismuthene
8
armchair zigzag
8
zigzag directions
8
increasing temperature
8
fracture resistance
8
temperature vacancy
8
crack
7
β-bismuthene
6

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.

View Article and Find Full Text PDF

Structural Basis of Ultralow Capacitances at Metal-Nonaqueous Solution Interfaces.

J Am Chem Soc

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!