For many years, in electrochemical processes, carbon nanostructures with metal support have been employed as electrodes due to their high surface area, chemical stability, and excellent performance as catalyst support by allowing a better electronic transfer. Nevertheless, on the surface, metallic nanoparticles are susceptible to corrosion. Instead, by encapsulating individual nanoparticles, they are protected. Among the carbon nanostructures, the most common are graphene, carbon nanotubes (CNTs), and carbon nanospheres (CNSs). Unlike CNTs and CNSs, graphene is difficult to obtain in mass production, limiting their applications. Regarding CNTs and CNSs, the latter presents better catalytic activity. Nonetheless, the process of synthesis of CNSs with metal inside is commonly made by time-consuming autoclave processes, some involving more than 43 h, and hence are expensive. Here, we suggest an advantageous synthesis of CNSs with an iron-nickel alloy encapsulated inside, by using a one-step chemical vapor deposition (CVD) process in less than 3 h. This material has potential applications for environmental and energy processes. According to the authors, the uses of iron-nickel alloys as an electrocatalyst for the ammonia oxidation reaction has not been proved. Thus, we evaluate the composite as an electrocatalyst for the ammonia oxidation reaction, an electrochemical process that offers environmental remediation and hydrogen as a fuel. The electrochemical characterization shows that the use of a bimetallic electrode improves the catalytic activity. In this case, nickel is the active specie and iron is the metal added which reduces the reaction potential. Besides, the composite presents high specific capacitance, better than other materials proposed such as graphene decorated with FeNi alloys. This behavior can be related to the variation of the catalyst morphology (supported vs. encapsulated) by improving the catalyst dispersion and particle size stabilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abb9d9 | DOI Listing |
Pharmaceutics
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Skłodowskiej St., 41-819 Zabrze, Poland.
: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.
View Article and Find Full Text PDFAnal Biochem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China. Electronic address:
Luminol-loaded mesoporous carbon nanospheres (MCs@LU) were utilized to develop a highly sensitive electrochemiluminescence (ECL) sensor for the detection of L-cysteine (L-Cys). L-Cys acted as the coreactant of luminol, and the pore confinement effect of mesoporous carbons (MCs) resulted in a robust ECL signal. Upon optimization, a linear correlation between the ECL intensity and L-Cys concentration was observed over the range of 5.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!