Abscisic acid (ABA) signals regulating stomatal aperture and water loss are usually studied in detached leaves or isolated epidermal peels and at infrequent timepoints. Measuring stomatal ABA responses in attached leaves across a time course enables the study of stomatal behaviour in the physiological context of the plant. Infrared thermal imaging is often used to characterize steady-state stomatal conductance via comparisons of leaf surface temperature but is rarely used to capture stomatal responses over time or across different leaf surfaces. We used dynamic thermal imaging as a robust, but sensitive, tool to observe stomatal ABA responses in a whole plant context. We detected stomatal responses to low levels of ABA in both monocots and dicots and identified differences between the responses of different leaves. Using whole plant thermal imaging, stomata did not always behave as described previously for detached samples: in Arabidopsis, we found no evidence for fast systemic ABA-induced stomatal closure, and in barley, we observed no requirement for exogenous nitrate during ABA-induced stomatal closure. Thus, we recommend dynamic thermal imaging as a useful approach to complement detached sample assays for the study of local and systemic stomatal responses and molecular mechanisms underlying stomatal responses to ABA in the whole plant context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13973 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFWaste Manag
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address:
Determination of the relative compositions of the mixed construction waste is crucial and an important step to enhance resource management. This information influences the design of construction waste recycling and sorting facilities, and aids in formulating effective management strategies for recycled and sorted waste products. However, different methods for waste sorting and composition recognition possess distinct characteristics and only apply to specific practical scenarios.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).
Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.
PLoS One
January 2025
College of Physics and Electronic Engineering, Hainan Normal University, HaiKou, China.
We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!