Regional changes to the intestinal microenvironment brought about by Roux-en-Y gastric bypass (RYGB) surgery may contribute to some of its potent systemic metabolic benefits through favorably regulating various local cellular processes. Here, we show that the intestinal contents of RYGB-operated compared with sham-operated rats region-dependently confer superior glycemic control to recipient germ-free mice in association with suppression of endotoxemia. Correspondingly, they had direct barrier-stabilizing effects on an intestinal epithelial cell line which, bile-exposed intestinal contents, were partly farnesoid X receptor (FXR)-dependent. Further, circulating fibroblast growth factor 19 levels, a readout of intestinal FXR activation, negatively correlated with endotoxemia severity in longitudinal cohort of RYGB patients. These findings suggest that various host- and/or microbiota-derived luminal factors region-specifically and synergistically stabilize the intestinal epithelial barrier following RYGB through FXR signaling, which could potentially be leveraged to better treat endotoxemia-induced insulin resistance in obesity in a non-invasive and more targeted manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689555 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101777 | DOI Listing |
Mol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, South Korea.
Inflammatory bowel disease is a chronic condition characterized by inflammation of the gastrointestinal tract, resulting from an abnormal immune response to normal stimuli, such as food and intestinal flora. Since the etiology of this disease remains largely unknown, murine models induced by the consumption of dextran-sodium sulfate serve as a pivotal tool for studying colon inflammation. In this study, we employed both acute and chronic colitis mouse models induced by varying durations of dextran-sodium sulfate consumption to investigate the pathological and immunologic characteristics throughout the disease course.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases.
View Article and Find Full Text PDFClin Exp Med
January 2025
The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!