Recent advances suggest the fallopian tube as the main anatomic site for high-grade ovarian or pelvic serous carcinoma (O/PSC). Many studies on the biologic role of tubal secretory cells in O/PSC development has been performed in the last decade. However, the role of tubal ciliated cells in this regard has rarely been explored. The purpose of this study was to determine if the change of the tubal ciliated cells is associated with serous neoplasia within the female pelvis. This study included 3 groups (low-risk or benign control, high-risk, and O/PSC) of patients and they were age-matched. Age of patients ranged from 20 to 85 and the age-associated data was stratified by 10-year intervals. The number of tubal ciliated cells was determined by microscopy and by tubulin immunohistochemical staining. The data was then professionally analyzed. The results showed that the absolute number of tubal ciliated cells decreased significantly with age within each age group. A reduction in ciliated cell counts within the tubal segments remained a significant risk factor for the development of serous cancers within the female pelvis after age adjustment. A dramatic decrease of tubal ciliated cells was identified in patients with high-risk and with O/PSC compared to those in the benign control or low-risk group ( < 0.001). Further, within the tubal fimbria, the number of ciliated cells reduction was more prominent in the high-risk group when compared to those of O/PSC patients. Our findings suggest that a decreased number of ciliated cells within women's fallopian tubes represents another histologic hallmark for early serous carcinogenesis. There is a relationship between loss of tubal ciliated cells and aging, the presence of high-risk factors for tubal-ovarian cancer, and co-existing O/PSCs. This represents an initial study identifying the role of tubal ciliated cells in the development of high-grade serous carcinoma in women's pelvis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716167 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!