Forest trees are an excellent resource from which to understand population differentiation and heterogeneous genome variation patterns due to the majority of forest trees being distributed widely and able to adapt to different climates and environments. is among the most geographically widespread and ecologically important tree species in China. Whole-genome resequencing data of 75 individual examples of throughout China were conducted, finding that all examples from different regions were clearly divided into either Northeast (N), Central (C), and South (S) populations. The ancestors of diverged into Northern group, comprising both N and C and Southern populations approximately 792,548 years ago. This time point of differentiation suggests that divergence of populations might have been triggered by the mid-Pleistocene transition. The three populations experienced considerable periods of bottleneck following divergence, with population expansion beginning around 5,000 years ago after the end of the last glacial maximum. We found N to be the center of origin of in China. The migration route of in China was from N to S. Although the majority of the regions of genomic differentiation between N and S populations can be explained by neutral processes, a number of tested outlier regions were also found to have been significantly influenced by natural selection. Our results highlight that linked selection and rates of recombination were important factors in genomic differentiation between the N and S populations. Finally, we identified a substantial number of functional genes related to climate change during population differentiation and adaptive evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691461PMC
http://dx.doi.org/10.1111/eva.13046DOI Listing

Publication Analysis

Top Keywords

genomic differentiation
12
whole-genome resequencing
8
forest trees
8
population differentiation
8
differentiation populations
8
differentiation
6
populations
6
genetic architecture
4
architecture demographic
4
demographic history
4

Similar Publications

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Transcription factors induce differential splicing of duplicated ribosomal protein genes during meiosis.

Nucleic Acids Res

January 2025

Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.

In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.

View Article and Find Full Text PDF

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.

View Article and Find Full Text PDF

Mapping the 3D genome architecture.

Comput Struct Biotechnol J

December 2024

Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

The spatial organization of the genome plays a critical role in regulating gene expression, cellular differentiation, and genome stability. This review provides an in-depth examination of the methodologies, computational tools, and frameworks developed to map the three-dimensional (3D) architecture of the genome, focusing on both ligation-based and ligation-free techniques. We also explore the limitations of these methods, including biases introduced by restriction enzyme digestion and ligation inefficiencies, and compare them to more recent ligation-free approaches such as Genome Architecture Mapping (GAM) and Split-Pool Recognition of Interactions by Tag Extension (SPRITE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!