Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Recent advances in medical imaging like MRI, CT-Scan, Doppler ultrasound, etc. have made it possible to study the hemodynamics of cardiovascular system having different levels of vessel abnormalities.
Methods: Within this work, we have developed two different personalized lumped-parameter models of the human carotid arteries having elastic and viscoelastic vessel wall behaviors. The data used in developing the models of the carotid arteries is taken from a healthy subject and a patient having mild carotid stenosis (55%) near a bifurcation using doppler ultrasound. The data consists measurements of blood flow velocities and geometrical parameters at selected locations. Prior to the measurements, the key measurable geometrical parameters are identified by normalized local sensitivity analysis.
Results: Finally, both developed and personalized models of carotid arteries are validated against the blood flow measurements obtained near carotid bifurcation. We observe a good agreement between model simulations and blood flow measurements taken near the bifurcation i.e. (r=0.94) for the healthy subject and (r=0.96) for the patient having a stenosis near the bifurcation.
Conclusions: This work provides further evidence, that the hemodynamics near a bifurcation can be modelled well with a 0D approach, even with different levels of stenosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105888 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!