A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Morphological response of the red palm weevil, Rhynchophorus ferrugineus, to a transient low temperature analyzed by computer tomography and holographic microscopy. | LitMetric

AI Article Synopsis

  • The red palm weevil (RPW) is a significant global pest of palm trees, and this study investigates its response to sudden drops in environmental temperature during its pre-pupal stage.
  • The researchers exposed the pre-pupae to low (5°C) and ambient (23°C) temperatures for 7 days, measuring changes in internal structure, integument morphology, and glucose levels to assess developmental impacts.
  • The findings showed that while both groups exhibited a decrease in fat body content and continued development, the cold-exposed weevils experienced a slight delay in development and higher glucose levels, suggesting that glucose may help them tolerate low temperatures.

Article Abstract

The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests worldwide. Our study aims to assess its internal and external morphological response to a sudden but transient decrease in the environmental temperature. Wild pre-pupae were subjected for 7 days to either low (5.0 ± 0.5 °C) or ambient temperature (23 ± 1 °C). Such conditions mimic a thermal anomaly happening in the larval stage most exposed to environmental factors. We quantified the changes undergone at: 1) the internal morphology, by X-Ray Computer Tomography (CT); 2) the 3-D integument' architecture, by Digital Holographic Microscopy (DHM); and 3) the glucose in hemolymph as a potential endogenous cryoprotectant. From X-ray CT we found that both pre-pupae subjected to cold and those remaining at ambient temperature follow a development where their fat body content decreases while a thick and dense cuticle is formed. There was no difference between both groups in the rate of change of fat body/dense tissues. Nevertheless, the cold group presents a slight developmental delay at the level of hemolymph content. Through DHM we again obtained that pre-pupae subjected to cold have not experienced a stop in their development. However, a more obvious developmental delay is now observed in this group at the level of the integumental roughness. Finally, regarding glucose, we found similar levels in control and ambient temperature larvae, while it was clearly increased in 51,7% of those subjected to cold. Our whole results provide morphological and biochemical evidence showing that the larval-pupal transition of the RPW continues almost undisturbed even during the quiescent state induced by a sudden and severe cold event. Nevertheless, a certain developmental delay is observed in both internal and external morphology. Additionally, the increased glucose level only found in the cold group suggests that glucose is part of the RPW cold tolerance strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2020.102748DOI Listing

Publication Analysis

Top Keywords

pre-pupae subjected
12
ambient temperature
12
subjected cold
12
developmental delay
12
morphological response
8
red palm
8
palm weevil
8
rhynchophorus ferrugineus
8
computer tomography
8
holographic microscopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!