Breeding habitat loss reveals limited foraging flexibility and increases foraging effort in a colonial breeding seabird.

Mov Ecol

Behavioural Ecology and Ecophysiology (BECO) Researchgroup, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.

Published: November 2020

Background: Habitat loss can force animals to relocate to new areas, where they would need to adjust to an unfamiliar resource landscape and find new breeding sites. Relocation may be costly and could compromise reproduction.

Methods: Here, we explored how the Lesser black-backed gull (Larus fuscus), a colonial breeding seabird species with a wide ecological niche, responds to the loss of its breeding habitat. We investigated how individuals adjusted their foraging behaviour after relocating to another colony due to breeding site destruction, and whether there were any reproductive consequences in the first years after relocation. To this end, we compared offspring growth between resident individuals and individuals that recently relocated to the same colony due to breeding habitat loss. Using GPS-tracking, we further investigated the foraging behaviour of resident individuals in both colonies, as well as that of relocated individuals, as enhanced foraging effort could represent a potential driver of reproductive costs.

Results: We found negative consequences of relocation for offspring development, which were apparent when brood demand was experimentally increased. Recently relocated gulls travelled further distances for foraging than residents, as they often visited more distant foraging sites used by residents breeding in their natal colony as well as new areas outside the home range of the residents in the colony where they settled.

Conclusions: Our results imply that relocated individuals did not yet optimally adapt to the new food landscape, which was unexpected, given the social information on foraging locations that may have been available from resident neighbours in their new breeding colony. Even though the short-term reproductive costs were comparatively low, we show that generalist species, such as the Lesser black-backed gull, may be more vulnerable to habitat loss than expected. Long term studies are needed to investigate how long individuals are affected by their relocation in order to better assess potential population effects of (breeding) habitat loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653720PMC
http://dx.doi.org/10.1186/s40462-020-00231-9DOI Listing

Publication Analysis

Top Keywords

habitat loss
20
breeding habitat
16
breeding
10
foraging
8
foraging effort
8
colonial breeding
8
breeding seabird
8
lesser black-backed
8
black-backed gull
8
foraging behaviour
8

Similar Publications

Son of a beach: Coastal development and the loss of natural beaches over time (1919 to 2018) on Okinawa Island, southern Japan.

Mar Pollut Bull

January 2025

Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. Electronic address:

The coastline of Okinawa Island, Japan, has been affected by human-made alterations for decades, often from land reclamation and coastal defense construction. Here, we use an Imperial Japanese Army map made between 1919 and 1921 to describe the composition of the Okinawan coastline approximately 100 years ago, and by overlapping this old map with a modern-day map of Okinawa (2018), we identified 131 sites where coastlines showed clear human-made alterations. For these sites, we examined what kinds of ecosystems were lost and what has replaced them.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common type of dementia which results in debilitating memory loss as the disease advances. However, among older adults with AD, some may experience rapid cognitive decline while others may maintain a stable cognitive status for years. In addition to the amyloid plaques, tau tangles, and neuronal inflammation characteristic of AD, there is strong evidence of dysregulation in the peripheral immune system, including decreased naïve T cells and increased memory T cells among older adults with AD.

View Article and Find Full Text PDF

Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.

View Article and Find Full Text PDF

The nocturnal aye-aye, Daubentonia madagascariensis, is one of the most elusive lemurs on the island of Madagascar. The timing of its activity and arboreal lifestyle has generally made it difficult to obtain accurate assessments of population size using traditional census methods. Therefore, alternative estimates provided by population genetic inference are essential for yielding much needed information for conservation measures and for enabling ecological and evolutionary studies of this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!