Hybrid fibrous mat containing cell interactive molecules offers the ability to deliver the cells and drugs in wound bed, which will help to achieve a high therapeutic treatment. In this study, a co-electrospun hybrid of polyvinyl alcohol (PVA), chitosan (Ch) and silk fibrous mat was developed and their wound healing potential by localizing bone marrow mesenchymal stem cells (MSCs)-derived keratinocytes on it was evaluated in vitro and in vivo. It was expected that fabricated hybrid construct could promote wound healing due to its structure, physical, biological specifications. The fabricated fibrous mats were characterized for their structural, mechanical and biochemical properties. The shape uniformity and pore size of fibers showed smooth and homogenous structures of them. Fourier transform infrared spectroscopy (FTIR) verified all typical absorption characteristics of Ch-PVA + Silk polymers as well as Ch-PVA or pure PVA substrates. The contact angle and wettability measurement of fibers showed that mats found moderate hydrophilicity by addition of Ch and silk substrates compared with PVA alone. The mechanical features of Ch-PVA + Silk fibrous mat increase significantly through co-electrospun process as well as hybridization of these synthetic and natural polymers. Higher degrees of cellular attachment and proliferation obtained on Ch-PVA + Silk fibers compared with PVA and Ch-PVA fibers. In terms of the capability of Ch-PVA + Silk fibers and MSC-derived keratinocytes, histological analysis and skin regeneration results showed this novel fibrous construct could be suggested as a skin substitute in the repair of injured skin and regenerative medicine applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677781PMC
http://dx.doi.org/10.1186/s13036-020-00249-yDOI Listing

Publication Analysis

Top Keywords

fibrous mat
12
wound healing
8
compared pva
8
ch-pva + silk fibers
8
fibrous
5
fibers
5
fabrication chitosan-polyvinyl
4
chitosan-polyvinyl alcohol
4
alcohol silk
4
silk electrospun
4

Similar Publications

Alginate/gelatin blend fibers for functional high-performance air filtration applications.

Int J Biol Macromol

December 2024

Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:

Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.

View Article and Find Full Text PDF

Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon.

View Article and Find Full Text PDF

The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS).

View Article and Find Full Text PDF

Piezoelectric bilayer fibrous conduit with gellan/curcumin encapsulated alginate infilling for promotion of sciatic nerve regeneration in the rat models.

Int J Biol Macromol

November 2024

Department of Biomedical Engineering, Medical Engineering and Biology Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. Electronic address:

Article Synopsis
  • * A new piezoelectric bilayer fibrous conduit was developed, using advanced materials and embedded with Curcumin-loaded gellan to promote nerve growth and drug release during healing.
  • * Results from in vivo testing demonstrated that this conduit significantly outperformed control groups in nerve regeneration metrics, suggesting it could be a viable option for nerve tissue engineering.*
View Article and Find Full Text PDF

Spinal cord injury (SCI) has been implicated in neural loss and, consequently, motor/sensory impairment. Here, we propose an improved formation for fibrous mat fabrication from the derivatives of poly(vinyl alcohol) (PVA) and gelatin (Gela) through horseradish peroxidase-mediated cross-linking, providing a sustained release of methylprednisolone (MP) for SCI repair. After 28 days, the animals were evaluated in terms of remyelination and apoptosis and underwent behavioral tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!