Background: Yangyin Fuzheng Jiedu Prescription (YFJP) is a traditional Chinese medicine (TCM) indicated for the treatment of hepatocellular carcinoma (HCC). Its potential targets and molecular mechanisms are not clear. Therefore, this study intends to explore the molecular mechanism of YFJP based on network pharmacology analysis and in vitro validation.

Methods And Results: Through univariate and multivariate analyses and survival analysis in HCC patients with or without YFJP treatment we found that drinking alcohol, alfafeto protein ≥ 400 ng/l, baseline portal vein tumor thrombus and total bilirubin level ≥ 18.8 μM) were independent risk factors for poor prognosis, while red blood cell count ≥ 4 × 10/l and TCM treatment were independent protective factors. Besides, YFJP prolonged the cumulative survival of HCC patients. Using online pharmacological methods, we obtained 58 relevant compounds and molecular 53 targets. By using scratch test, Transwell assay, EdU assay, and TUNEL staining, we found that YFJP-containing serum repressed the migration, invasion and proliferation of HCC cells in vitro, and induced cell apoptosis. Moreover, YFJP diminished the gene expression of TP53, CCND1, p-EGFR, EGF, VEGFA, JUN, IL6, COX-2, AKT1, and MAPK1 in HCC cells, but elevated the expression of ESR1 and CASP3.

Conclusions: Taken together, results showed that YFJP attenuated HCC progression through mediating effects on HCC-related genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7650191PMC
http://dx.doi.org/10.1186/s12935-020-01596-yDOI Listing

Publication Analysis

Top Keywords

molecular targets
8
yangyin fuzheng
8
fuzheng jiedu
8
jiedu prescription
8
treatment hepatocellular
8
hepatocellular carcinoma
8
based network
8
network pharmacology
8
pharmacology analysis
8
hcc patients
8

Similar Publications

Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.

View Article and Find Full Text PDF

Purpose: This study aimed to examine the differential expression profiles of plasma metabolites in rat models of post-traumatic osteoarthritis (PTOA) and elucidate the roles of metabolites and their pathways in the progression of PTOA using bioinformatics analysis.

Method: Plasma samples were collected from 24 SD female rats to model PTOA, and metabolomic assays were conducted. The samples were divided into three groups: the surgically induced mild PTOA group (Group A: 3 weeks postoperative using the modified Hulth model; age 2 months), the surgically induced severe PTOA group (Group B: 5 weeks postoperative using the modified Hulth model; age 2 months), and the normal control group (Group C: healthy rats aged 2 months).

View Article and Find Full Text PDF

Context: Sarcopenia is a disease characterized by low muscle mass and function that places individuals at greater risk of disability, loss of independence, and death. Current therapies include addressing underlying performance issues, resistance training, and/or nutritional strategies. However, these approaches have significant limitations, and chronic inflammation associated with sarcopenia may blunt the anabolic response to exercise and nutrition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!