A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating the distribution of time to extinction of infectious diseases in mean-field approaches. | LitMetric

A key challenge for many infectious diseases is to predict the time to extinction under specific interventions. In general, this question requires the use of stochastic models which recognize the inherent individual-based, chance-driven nature of the dynamics; yet stochastic models are inherently computationally expensive, especially when parameter uncertainty also needs to be incorporated. Deterministic models are often used for prediction as they are more tractable; however, their inability to precisely reach zero infections makes forecasting extinction times problematic. Here, we study the extinction problem in deterministic models with the help of an effective 'birth-death' description of infection and recovery processes. We present a practical method to estimate the distribution, and therefore robust means and prediction intervals, of extinction times by calculating their different moments within the birth-death framework. We show that these predictions agree very well with the results of stochastic models by analysing the simplified susceptible-infected-susceptible (SIS) dynamics as well as studying an example of more complex and realistic dynamics accounting for the infection and control of African sleeping sickness ().

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811583PMC
http://dx.doi.org/10.1098/rsif.2020.0540DOI Listing

Publication Analysis

Top Keywords

stochastic models
12
time extinction
8
infectious diseases
8
deterministic models
8
extinction times
8
extinction
5
models
5
estimating distribution
4
distribution time
4
extinction infectious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!