Fully Inkjet-Printed Mesoporous SnO-Based Ultrasensitive Gas Sensors for Trace Amount NO Detection.

ACS Appl Mater Interfaces

Department of Materials Engineering, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore, Karnataka 560012, India.

Published: December 2020

Printed sensors are among the most successful groups of devices within the domain of printed electronics, both in terms of their application versatility and the emerging market share. However, reports on fully printed gas sensors are rare in the literature, even though it can be an important development toward fully printed multisensor platforms for diagnostics, process control, and environmental safety-related applications. In this regard, here, we present the traditional tin oxide-based completely inkjet-printed co-continuous and mesoporous thin films with an extremely large surface-to-volume ratio and then investigate their NO sensing properties at low temperatures. A method known as evaporation-induced self-assembly (EISA) has been mimicked in this study using pluronic F127 (PEO-PPO-PEO) as the soft templating agent and xylene as the micelle expander to obtain highly reproducible and spatially homogeneous co-continuous mesoporous crystalline SnO with an average pore diameter of the order of 15-20 nm. The fully printed SnO gas sensors thus produced show high linearity for NO detection, along with extremely high average response of 11,507 at 5 ppm NO. On the other hand, the sensors show an ultralow detection limit of the order of 20 ppb with an easy to amplify response of 31. While the excellent electronic transport properties along such co-continuous, mesoporous structures are ensured by their well-connected (co-continuous) ligaments and pores (thereby ensuring high surface area and high mobility transport at the same time) and may actually be responsible for the outstanding sensor performance that has been observed, the use of an industrial printing technique ascertains the possibility of high-throughput manufacturing of such sensor units toward inexpensive and wide-range applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c14704DOI Listing

Publication Analysis

Top Keywords

gas sensors
12
fully printed
12
co-continuous mesoporous
12
sensors
5
printed
5
fully
4
fully inkjet-printed
4
mesoporous
4
inkjet-printed mesoporous
4
mesoporous sno-based
4

Similar Publications

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Machine-learning for discovery of descriptors for gas-sensing: A case study of doped metal oxides.

Talanta

January 2025

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China. Electronic address:

Conventionally, gas sensors are studied based on functional materials, case by case, using experimental methods. In this study, 872 datasets with 34 features of doped oxides, extracted from the literature, were used to analyze the key features of gas-sensing reactions and understand gas-sensing mechanisms from a global perspective using a genetic algorithm-optimized artificial neural network. Shapley additive explanations were employed to determine the importance and relationships of the features.

View Article and Find Full Text PDF

Annealing plays a crucial role for in enhancing the gas sensing properties of MOF-derived TiO (MIL-125). Generally, TiO transforms into different polymorphs (anatase, rutile, and brookite) during annealing, each with unique crystal structures and gas sensing properties. The aim of this research was to investigate the impact of annealing (500-650 °C) on the properties of MIL-125, which had not been previously studied.

View Article and Find Full Text PDF

Nanofibrous Ru/SnO heterostructure as robust bifunctional electrocatalyst for high-performance overall hydrazine splitting and Zn-hydrazine battery.

J Colloid Interface Sci

January 2025

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Water electrolysis represents a green and efficient strategy for hydrogen (H) production. However, the four-electron transfer process involved in its anodic oxygen evolution reaction (OER) half-reaction restricts the H generation rate. Employing hydrazine oxidation reaction (HzOR) as a substitute for OER in H generation can dramatically reduce energy consumption.

View Article and Find Full Text PDF

pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!