The subgenus includes about 25 plant species native to Madagascar, and is widely used in traditional medicine worldwide. Different formulations from have been employed for the treatment of several ailments, including infections, gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of achieving the phytochemical valorization of sp., allowing a sustainable production that prevents from a massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on sp.; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive compounds; and the application of machine learning technology to model and optimize the full phytochemical potential of sp. As a result, species can be considered as a promising source of plant bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale biotechnological exploitation in cosmetic, food, and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762000 | PMC |
http://dx.doi.org/10.3390/ph13120444 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFJ Am Med Inform Assoc
January 2025
Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia.
Objective: We aimed to develop a highly interpretable and effective, machine-learning based risk prediction algorithm to predict in-hospital mortality, intubation and adverse cardiovascular events in patients hospitalised with COVID-19 in Australia (AUS-COVID Score).
Materials And Methods: This prospective study across 21 hospitals included 1714 consecutive patients aged ≥ 18 in their index hospitalization with COVID-19. The dataset was separated into training (80%) and test sets (20%).
Bioinformatics
January 2025
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.
Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.
View Article and Find Full Text PDFObjective: The objective of this research was to devise and authenticate a predictive model that employs CT radiomics and deep learning methodologies for the accurate prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC).
Methods: A total of 143 ccRCC patients were included in the training cohort, and 62 ccRCC patients were included in the validation cohort. The CT images from all patients were normalized, and the tumor regions were manually segmented via ITK-SNAP software.
Mol Divers
January 2025
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
Molecular Property Prediction (MPP) is a fundamental task in important research fields such as chemistry, materials, biology, and medicine, where traditional computational chemistry methods based on quantum mechanics often consume substantial time and computing power. In recent years, machine learning has been increasingly used in computational chemistry, in which graph neural networks have shown good performance in molecular property prediction tasks, but they have some limitations in terms of generalizability, interpretability, and certainty. In order to address the above challenges, a Multiscale Molecular Structural Neural Network (MMSNet) is proposed in this paper, which obtains rich multiscale molecular representations through the information fusion between bonded and non-bonded "message passing" structures at the atomic scale and spatial feature information "encoder-decoder" structures at the molecular scale; a multi-level attention mechanism is introduced on the basis of theoretical analysis of molecular mechanics in order to enhance the model's interpretability; the prediction results of MMSNet are used as label values and clustered in the molecular library by the K-NN (K-Nearest Neighbors) algorithm to reverse match the spatial structure of the molecules, and the certainty of the model is quantified by comparing virtual screening results across different K-values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!