Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The term big data has emerged in network concepts since the Internet of Things (IoT) made data generation faster through various smart environments. In contrast, bandwidth improvement has been slower; therefore, it has become a bottleneck, creating the need to solve bandwidth constraints. Over time, due to smart environment extensions and the increasing number of IoT devices, the number of fog nodes has increased. In this study, we introduce fog fragment computing in contrast to conventional fog computing. We address bandwidth management using fog nodes and their cooperation to overcome the extra required bandwidth for IoT devices with emergencies and bandwidth limitations. We formulate the decision-making problem of the fog nodes using a reinforcement learning approach and develop a Q-learning algorithm to achieve efficient decisions by forcing the fog nodes to help each other under special conditions. To the best of our knowledge, there has been no research with this objective thus far. Therefore, we compare this study with another scenario that considers a single fog node to show that our new extended method performs considerably better.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730215 | PMC |
http://dx.doi.org/10.3390/s20236942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!