Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In power inspection tasks, the insulator and spacer are important inspection objects. UAV (unmanned aerial vehicle) power inspection is becoming more and more popular. However, due to the limited computing resources carried by a UAV, a lighter model with small model size, high detection accuracy, and fast detection speed is needed to achieve online detection. In order to realize the online detection of power inspection objects, we propose an improved SSD (single shot multibox detector) insulator and spacer detection algorithm using the power inspection images collected by a UAV. In the proposed algorithm, the lightweight network MnasNet is used as the feature extraction network to generate feature maps. Then, two multiscale feature fusion methods are used to fuse multiple feature maps. Lastly, a power inspection object dataset containing insulators and spacers based on aerial images is built, and the performance of the proposed algorithm is tested on real aerial images and videos. Experimental results show that the proposed algorithm can efficiently detect insulators and spacers. Compared with existing algorithms, the proposed algorithm has the advantages of small model size and fast detection speed. The detection accuracy can achieve 93.8%. The detection time of a single image on TX2 (NVIDIA Jetson TX2) is 154 ms and the capture rate on TX2 is 8.27 fps, which allows realizing online detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729514 | PMC |
http://dx.doi.org/10.3390/s20236961 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!