Increased preferential activation of small cutaneous nerve fibers by optimization of electrode design parameters.

J Neural Eng

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

Published: February 2021

Electrical preferential activation of small nociceptive fibers may be achieved with the use of specialized small area electrodes, however, the existing electrodes are limited to low stimulation intensities. As existing electrodes have been developed empirically, the present study aimed to use computational modeling and optimization techniques to investigate if changes in electrode design parameters could improve the preferential activation of small fibers.Two finite element models; one of a planar concentric and one of an intra-epidermal electrode were combined with two multi-compartmental nerve fiber models of an Aδ-fiber and an Aβ-fiber. These two-step hybrid models were used for the optimization of four electrode parameters; anode area, anode-cathode distance, cathode area, and cathode protrusion. Optimization was performed using a gradient-free bounded Nelder-Mead algorithm, to maximize the current activation threshold ratio between the Aβ-fiber model and the Aδ-fiber model.All electrode parameters were optimal at their lower bound, except the cathode protrusion, which was optimal a few micrometers above the location of the Aδ-fiber model. A small cathode area is essential for producing a high current density in the epidermal skin layer enabling activation of small fibers, while a small anode area and anode-cathode distance are important for the minimization of current spread to deeper tissues, making it less likely to activate large fibers. Combining each of the optimized electrode parameters improved the preferential activation of small fibers in comparison to existing electrodes, by increasing the activation threshold ratio between the two nerve fiber types. The maximum increase in the activation threshold ratio was 289% and 595% for the intra-epidermal and planar concentric design, respectively.The present study showed that electrical preferential small fiber activation can be improved by electrode design. Additionally, the results may be used for the production of an electrode that could potentially be used for clinical assessment of small fiber neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/abd1c1DOI Listing

Publication Analysis

Top Keywords

activation small
20
preferential activation
16
electrode design
12
existing electrodes
12
electrode parameters
12
activation threshold
12
threshold ratio
12
small
10
activation
9
electrode
8

Similar Publications

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.

View Article and Find Full Text PDF

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!