Reduced multisensory facilitation exists at different periods of development in autism.

Cortex

Perceptual Neuroscience Laboratory for Autism and Development (PNLab), McGill University, Montreal, Canada; Department of Educational and Counselling Psychology, McGill University, Montreal, Canada; University of Montreal Center of Excellence for Pervasive Developmental Disorders (CETEDUM), Montreal, Canada.

Published: January 2021

Atypical sensory processing is now recognised as a key component of an autism diagnosis. The integration of multiple sensory inputs (multisensory integration (MSI)) is thought to be idiosyncratic in autistic individuals and may have cascading effects on the development of higher-level skills such as social communication. Multisensory facilitation was assessed using a target detection paradigm in 45 autistic and 111 neurotypical individuals, matched on age and IQ. Target stimuli were: auditory (A; 3500 Hz tone), visual (V; white disk 'flash') or audiovisual (AV; simultaneous tone and flash), and were presented on a dark background in a randomized order with varying stimulus onset delays. Reaction time (RT) was recorded via button press. In order to assess possible developmental effects, participants were divided into younger (age 14 or younger) and older (age 15 and older) groups. Redundancy gain (RG) was significantly greater in neurotypical, compared to autistic individuals. No significant effect of age or interaction was found. Race model analysis was used to compute a bound value that represented the facilitation effect provided by MSI. Our results revealed that MSI facilitation occurred (violation of the race model) in neurotypical individuals, with more efficient MSI in older participants. In both the younger and older autistic groups, we found reduced MSI facilitation (no or limited violation of the race model). Autistic participants showed reduced multisensory facilitation compared to neurotypical participants in a simple target detection task, void of social context. This remained consistent across age. Our results support evidence that autistic individuals may not integrate low-level, non-social information in a typical fashion, adding to the growing discussion around the influential effect that basic perceptual atypicalities may have on the development of higher-level, core aspects of autism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2020.09.031DOI Listing

Publication Analysis

Top Keywords

multisensory facilitation
12
autistic individuals
12
race model
12
reduced multisensory
8
development higher-level
8
target detection
8
neurotypical individuals
8
younger older
8
msi facilitation
8
violation race
8

Similar Publications

Multimodal MRI Analysis of Microstructural and Functional Connectivity Brain Changes Following Systematic Audio-Visual Training in a Virtual Environment.

Neuroimage

December 2024

Institute of Population Health, University of Liverpool, United Kingdom; Hanse Wissenschaftskolleg, Delmenhorst, Germany. Electronic address:

Recent work has shown rapid microstructural brain changes in response to learning new tasks. These cognitive tasks tend to draw on multiple brain regions connected by white matter (WM) tracts. Therefore, behavioural performance change is likely to be the result of microstructural, functional activation, and connectivity changes in extended neural networks.

View Article and Find Full Text PDF

Phenomenological Mapping: A Method For Understanding Pre-Reflective Consciousness.

Integr Psychol Behav Sci

December 2024

Universidad del Desarrollo, Santiago de Chile, Chile.

Exploring the nuanced and often elusive realm of pre-reflective consciousness presents a methodological challenge, as it involves capturing experiences that arise prior to reflective thought and language. This article introduces Phenomenological Mapping, an innovative research method designed to systematically study the pre-reflective dimensions of human experience. Grounded in the foundational theories of Edmund Husserl (2012), Maurice Merleau-Ponty (2013), and Martin Heidegger (1992, 2008), the approach also integrates contemporary perspectives from Dan Zahavi (1999, Contemporary Phenomenology and Qualitative Research 5(1), 1-17, 2021), Shaun Gallagher (2006, 2017), and Evan Thompson (2010, 2017).

View Article and Find Full Text PDF

The integration and interaction of cross-modal senses in brain neural networks can facilitate high-level cognitive functionalities. In this work, we proposed a bioinspired multisensory integration neural network (MINN) that integrates visual and audio senses for recognizing multimodal information across different sensory modalities. This deep learning-based model incorporates a cascading framework of parallel convolutional neural networks (CNNs) for extracting intrinsic features from visual and audio inputs, and a recurrent neural network (RNN) for multimodal information integration and interaction.

View Article and Find Full Text PDF

Hydrogel-based flexible electronic components have become the optimal solution to address the rigidity problem of traditional electronics in health management. In this study, a multipurpose hydrogel is introduced, which is formed by combining a dual-network consisting of physical (chitosan, polyvinyl alcohol (PVA)) and chemical (poly(isopropyl acrylamide (NIPAM)-co-acrylamide (AM))) cross-linking, along with signal conversion fillers (eutectic gallium indium (EGaIn), TiC MXene, polyaniline (PANI)) for responding to external stimuli. Multiple sensing of dynamic and static signals is permissible for it.

View Article and Find Full Text PDF

Decoding visual and auditory stimuli from brain activities, such as electroencephalography (EEG), offers promising advancements for enhancing machine-to-human interaction. However, effectively representing EEG signals remains a significant challenge. In this paper, we introduce a novel Delayed Knowledge Transfer (DKT) framework that employs spiking neurons for attention detection, using our experimental EEG dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!