Non-invasive tracking of T-cells may help to predict the patient responsiveness and therapeutic outcome. Herein, we developed bioorthogonal T-cell labeling and tracking strategy using bioorthogonal click chemistry. First, ovalbumin (OVA) antigen-specific cytotoxic T-cells (CTLs) were incubated with N-azidoacetyl-D-mannosamine-tetraacylated (AcManNAz) for incorporating azide (N) groups on the surface of CTLs via metabolic glycoengineering. Subsequently, azide groups on the CTLs were chemically labeled with near infrared fluorescence (NIRF) dye, Cy5.5, conjugated dibenzylcyclooctyne (DBCO-Cy5.5) via bioorthogonal click chemistry, resulting in Cy5.5-labeled CTLs (Cy5.5-CTLs). The labeling efficiency of Cy5.5-CTLs could be readily controlled by changing concentrations of AcManNAz and DBCO-Cy5.5 in cultured cells. Importantly, Cy5.5-CTLs presented the strong NIRF signals in vitro and they showed no significant changes in the functional properties, such as cell viability, proliferation, and antigen-specific cytolytic activity. In ovalbumin (OVA)-expressing E.G-7 tumor-bearing immune-deficient mice, intravenously injected Cy5.5-CTLs were clearly observed at targeted solid tumors via non-invasive NIRF imaging. Moreover, tumor growth inhibition of E.G-7 tumors was closely correlated with the intensity of NIRF signals from Cy5.5-CTLs at tumors after 2-3 days post-injection. The Cy5.5-CTLs showed different therapeutic responses in E.G-7 tumor-bearing immune-competent mice, in which they were divided by their tumor growth efficacy as 'high therapeutic response (TR (+))' and 'low therapeutic response (TR (-))'. These different therapeutic responses of Cy5.5-CTLs were highly correlated with the NIRF signals of Cy5.5-CTLs at targeted tumor tissues in the early stage. Therefore, non-invasive tracking of T-cells can be able to predict and elicit therapeutic responses in the adoptive T-cell therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2020.12.002 | DOI Listing |
Anal Chem
January 2025
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu 212003, China.
Early diagnosis of tumors allows effective treatment of primary cancers through localized therapeutic interventions. However, developing diagnostic tools for sensitive, simple, and early tumor (especially less than 2 mm in diameter) detection remains a challenge. Herein, we presented a biomarker-activatable nanoprobe that enabled a near-infrared (NIR) photothermally amplified signal for fluorescence imaging and urinalysis of tumor.
View Article and Find Full Text PDFACS Sens
January 2025
Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Hypochlorous acid can be employed as a biomarker for blood infection (such as sepsis) and tissue damage (such as drug-induced liver injury, DILI), and the diagnosis of tissue damage or blood infection can be achieved through the detection of hypochlorous acid in relevant biological samples. Considering the complex environment and the diverse interferences in living organisms and blood plasma, developing new detection methods for HClO with high signal-to-background ratios is particularly important, and it can improve the accuracy of detection and quality of imaging based on a higher contrast, which makes the detection of HClO clearer and more accurate. Here, based on the advantages of the NIR fluorescence/photoacoustic dual-modal probe, we reported a hypochlorous acid-activatable NIR fluorescence/photoacoustic dual-modal probe (NIRF-PA-HClO) based on the spirolactam ring-opening strategy in this paper.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province China.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy, but there is limited improvement in its treatment. Near-infrared fluorescence (NIRF) imaging could potentially address the clinical challenges of PDAC. Indocyanine green (ICG) has been widely used in clinical practice; however, its short half-life and lack of active targeting greatly limit its application in pancreatic surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!