In mammals, goal-directed and planning processes support flexible behaviour used to face new situations that cannot be tackled through more efficient but rigid habitual behaviours. Within the Bayesian modelling approach of brain and behaviour, models have been proposed to perform planning as probabilistic inference but this approach encounters a crucial problem: explaining how such inference might be implemented in brain spiking networks. Recently, the literature has proposed some models that face this problem through recurrent spiking neural networks able to internally simulate state trajectories, the core function at the basis of planning. However, the proposed models have relevant limitations that make them biologically implausible, namely their world model is trained 'off-line' before solving the target tasks, and they are trained with supervised learning procedures that are biologically and ecologically not plausible. Here we propose two novel hypotheses on how brain might overcome these problems, and operationalise them in a novel architecture pivoting on a spiking recurrent neural network. The first hypothesis allows the architecture to learn the world model in parallel with its use for planning: to this purpose, a new arbitration mechanism decides when to explore, for learning the world model, or when to exploit it, for planning, based on the entropy of the world model itself. The second hypothesis allows the architecture to use an unsupervised learning process to learn the world model by observing the effects of actions. The architecture is validated by reproducing and accounting for the learning profiles and reaction times of human participants learning to solve a visuomotor learning task that is new for them. Overall, the architecture represents the first instance of a model bridging probabilistic planning and spiking-processes that has a degree of autonomy analogous to the one of real organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748287 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1007579 | DOI Listing |
J Med Internet Res
January 2025
First Hospital of China Medical University, Shenyang, China.
Background: HIV/AIDS remains a significant global challenge, and with the rapid advancement of technology, there has been an increasing number of interventions aimed at improving HIV/AIDS cognition and self-management behaviors among patients. However, there is still a lack of detailed literature integrating relevant evidence.
Objective: This study aims to comprehensively review existing research on interventions using modern information methods to improve HIV/AIDS cognition and enhance self-management behaviors among patients.
Proc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China.
Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!