True one-dimensional (1D) van der Waals materials can form two-dimensional (2D) dangling-bond-free anisotropic surfaces. Dangling bonds on surfaces act as defects for transporting charge carriers. In this study, we consider true 1D materials to be VSe chains, and then the electronic structures of 2D sheets composed of true 1D VSe chains are calculated. The (010) plane has indirect bandgap with 0.757 eV (1.768 eV), while the (111̅) plane shows a nearly direct bandgap of 1.047 eV (2.118 eV) for DFT-D3 (HSE06) correction, respectively. The (111̅) plane of VSe is expected to be used in optoelectronic devices because it contains a nearly direct bandgap. Partial charge analysis indicates that the (010) plane exhibits interchain interaction is stronger than the (111̅) plane. To investigate the strain effect, we increased the interchain distance of planes until an indirect-to-direct bandgap transition occurred. The (010) plane then demonstrated a direct bandgap when interchain distance increased by 30%, while the (111̅) plane demonstrated a direct bandgap when the interchain distance increased by 10%. In mechanical sensors, this change in the bandgap was induced by the interchain distance.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abc6deDOI Listing

Publication Analysis

Top Keywords

111̅ plane
16
direct bandgap
16
interchain distance
16
010 plane
12
vse chains
8
plane demonstrated
8
demonstrated direct
8
bandgap interchain
8
distance increased
8
plane
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!