Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH NH PbI perovskite layer, using two phthalocyanine (Pc) molecules (NP-SC -ZnPc and NP-SC -TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid-base interactions with under-coordinated Pb sites, leading to efficient defect passivation of the perovskite layer. The tendency of both NP-SC -ZnPc and NP-SC -TiOPc to relax on the PbI terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high-quality thin films with a dense and compact structure and lower surface roughness. Using NP-SC -ZnPc and NP-SC -TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% for NP-SC -TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202005216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!