AI Article Synopsis

  • Haemophilic arthropathy (HA) is a common complication in hemophilia patients, triggered by bleeding into the joints and resulting in severe pain and reduced quality of life.
  • Factor replacement therapy helps prevent joint bleeding in children, but many in developing countries still face HA due to limited access to treatment.
  • The condition's complex pathology involves inflammation, synovitis, and damage to bones and cartilage, highlighting the need for further research to understand and address these mechanisms.

Article Abstract

Haemophilic arthropathy (HA), caused by intra-articular haemorrhage, is one of the most common complications in patients with haemophilia. Factor replacement therapy provides missing coagulation factors to prevent children with haemophilia from joint bleeding and decreases their risk for HA. However, haemophilia patients in developing countries are still suffering from HA due to insufficient replacement therapy. Symptoms such as pain and activity limitations caused by HA seriously affect the functional abilities and quality of life of patients with HA, causing a high disability rate in the haemophilia cohort. The pathological mechanism of HA is complicated because the whole pathological mainly involves hypertrophic synovitis, osteopenia, cartilage and bone destruction, and these pathological changes occur in parallel and interact with each other. Inflammation plays an important role in the whole complex pathological process, and iron, cytokines, growth factors and other factors are involved. This review summarizes the pathological mechanism of HA to provide background for clinical and basic research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-020-06052-8DOI Listing

Publication Analysis

Top Keywords

pathological mechanism
12
haemophilic arthropathy
8
replacement therapy
8
pathological
6
mechanism joint
4
joint destruction
4
destruction haemophilic
4
arthropathy haemophilic
4
arthropathy caused
4
caused intra-articular
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!