This work for the first time evaluates the ability of homogeneous, stable, and pure zinc oxide nanoparticles (ZnONPs-GS) synthesized by "green chemistry" - an environmentally friendly, cheap, and easy method that allows efficient use of plant waste, such as banana peels, for the selective detection of four neurotransmitters present in body fluids and promotion of the SERS effect. Selective adsorption on ZnONPs-GS was compared with adsorption on the surface of (1) ZnONPs, which were obtained by electrochemical dissolution of zinc in a solution free of surfactants and (2) mechanically polished surface of bare Zn. The study showed that SERS spectroscopy using unique marker bands allows distinguishing whether the adsorbate is deposited on the surface of zinc or zinc oxide. Thus, the combination of the SERS technique with an optical probe can allow an in vivo determination of the condition of galvanized implants. The use of SERS has been extended to monitor the photocatalytic properties of surface-functionalized ZnO nanoparticles. It has been shown that despite the same structure, purity, and adsorption properties, ZnONPs-GS obtained using "green chemistry" are more bio-friendly for biological material than those obtained by the electrochemical method. This is because the surface of ZnONPs-GS is free of hydroxyl groups, which can easily form reactive oxygen species when the surface is exposed to visible radiation. Thus, surface-functionalized ZnONPS-GS can protect the biological material from the damage caused by the production and attack of an excess of ROS. Also, for an exemplary neurotransmitter, structural changes when it is not-covalently bound to Zn/ZnO were compared with the structural changes of this neurotransmitter deposited on the surface of various metals (Cu, α-Ti, and α-Fe) and metal oxides (leaf-like CuO, rutile-TiO2, and γ-Fe2O3). It has been shown that adsorption only slightly depends on the type of metallic surface and the development of this surface for roughness up to 1 micron. Metal substrates were characterized before and after the neurotransmitters' adsorption. UV-Vis, Raman, and ATR-FTIR confirmed the formation of ZnO nanoparticles. XRD showed a high crystalline structure of wurtzite. TEM and DLS showed that nanoparticles are spherical, well dispersed, and have a uniform size.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03517cDOI Listing

Publication Analysis

Top Keywords

zinc oxide
8
"green chemistry"
8
surface
8
deposited surface
8
zno nanoparticles
8
biological material
8
structural changes
8
sers
5
znonps-gs
5
adsorption
5

Similar Publications

Introduction: A novel antifungal formulation combining zinc oxide nanoparticles and Whitfield's spirit solution (ZnO-WFs) was developed to enhance the treatment of superficial fungal foot infections.

Methods: This 8-week, randomized, double-blinded controlled trial compared the efficacy, safety, and cost-effectiveness of ZnO-WFs with those of Whitfield's spirit solution (WFs) alone and a zinc oxide nanoparticle solution (ZnOs). Seventy of the 84 enrolled patients completed the trial.

View Article and Find Full Text PDF

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Multi-Resonance 1,4-BN-Heteroarene for Filterless Narrowband Photodetector.

Angew Chem Int Ed Engl

January 2025

Nankai University, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.

As an emerging class of optoelectronic materials, multi-resonance (MR) 1,4-BN-heteroarenes have been extensively employed as narrowband electroluminescence materials, whereas their absorption feature has largely been neglected. Here we construct the first MR-molecule-based phototransistor for filterless narrowband photodetectors (NBPDs) by anchoring narrowband absorption MR molecules on the high-mobility semiconductor indium-zinc-oxide (IZO) film. The resulting device exhibits high-performance photodetection with a small full-width at half-maximum (FWHM) of 33 nm, which represents a new record for NBPDs based on intrinsic narrowband absorbing materials.

View Article and Find Full Text PDF

Zinc oxide nanoparticle-embedded tannic acid/chitosan-based sponge: A highly absorbent hemostatic agent with enhanced antimicrobial activity.

Int J Biol Macromol

January 2025

Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran; Wound Care Solution, Nano Fanavaran Narin Teb Co., Tehran, P.O. Box 19177-53531, Iran; Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany. Electronic address:

This study reports the development of a highly absorbent Chitosan (CS)/Tannic Acid (TA) sponge, synthesized via chemical cross-linking with Epichlorohydrin (ECH) and integrated with zinc oxide nanoparticles (ZnO NPs) as a novel hemostatic anti-infection agent. The chemical properties of the sponges were characterized using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and zeta potential measurements. Morphological and elemental analyses conducted through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX) revealed a uniform distribution of ZnO NPs, with particle sizes below 20 nm.

View Article and Find Full Text PDF

An aqueous zinc-ion battery with an organic-inorganic nanohybrid cathode featuring high operating voltage and long-term stability.

Chem Commun (Camb)

January 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Cathode materials with both high capacity and high operating voltage are essential for advancing aqueous zinc-ion batteries (ZIBs). Conventional high-capacity materials, such as vanadium-based compounds, typically deliver low discharge voltages. In contrast, organic cathodes show high operating voltages but often exhibit limited capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!