Purpose: Intrusion of the occupant compartment increases the risks for severe injury and death. This study analyzes rear sled and crash tests with an instrumented second-row Hybrid III 5 percentile anthropometric test device (ATD) to assess occupant kinematics and biomechanical responses with and without intrusion of the second-row seatback.
Methods: Three sled tests and four crash tests were conducted with a 1993 Ford Taurus and a belted 5 female ATD seated behind a belted 50 male ATD on the right-side of the vehicle. The sled tests were conducted at 25, 33 and 40 km/h and involved no intrusion. The first crash test was conducted with a passenger car striking the vehicle at 80 km/h with full centerline overlap. The second to fourth crash tests were with a Sport Utility Vehicle (SUV) striking with a 50% overlap. Tests 2 and 3 were at 51 km/h and test 4, at 80 km/h impact speed. A large wooden speaker box was placed in the trunk of the Taurus in tests 3 and 4. Second-row intrusion was measured at the right-rear outboard package shelf retractor.
Results: The sled tests without intrusion had occupant responses below injury assessment reference values (IARVs). The right second-row ATD moved rearward relative to the interior, compressing the rear seatback until it rebounded forward. Occupant compartment intrusion of 12-77 cm in the crash tests pushed the ATD forward, increasing head and chest acceleration. The head, neck and chest biomechanical responses were below IARVs in crash tests 1 to 3 with minimal intrusion (≤ 25 cm). Most of the biomechanical responses were above IARVs for the right second-row ATD in test 4 with higher intrusion. The HIC increased with intrusion. Head acceleration was more than 2.5-times greater in test 3 than in test 2, highlighting the importance of cargo in rear crashes. Test 4 had 2.4-times more energy than test 3 and up to 7.7 times greater biomechanical responses with 77 cm of intrusion.
Conclusions: The crash tests show that intrusion increases occupant responses in the right second-row seat and pushes the occupant forward in rear impacts. The sled tests without intrusion had relatively low biomechanical responses. Intrusion was influenced by the crash energy and cargo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15389588.2020.1842380 | DOI Listing |
Biomimetics (Basel)
December 2024
China Automotive Technology and Research Center, Tianjin 300300, China.
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin.
View Article and Find Full Text PDFStapp Car Crash J
December 2024
Injury Biomechanics Research Center, The Ohio State University.
Thoracic injuries, most frequently rib fractures, commonly occur in motor vehicle crashes. With an increased reliance on human body models (HBMs) for injury prediction in various crash scenarios, all thoracic tissues and structures require more comprehensive evaluation for improvement of HBMs. The objective of this study was to quantify the contribution of costal cartilage to whole rib bending properties in physical experiments.
View Article and Find Full Text PDFMil Med
December 2024
Clinical and Operational Space Medicine Innovation Consortium (COSMIC), 59th Medical Wing Science and Technology, Lackland Air Force Base, TX 78236, USA.
Introduction: Military and commercial stakeholders are investing to explore the use of hypersonic aircraft and orbital spacecraft to transport cargo, medical supplies, passengers, and casualties. These vehicle platforms require periods of sustained acceleration, but to date, these dynamic forces have not been comprehensively considered in the environment of critical care patient movement because injured patients and advanced aeromedical evacuation (AE) equipment are rarely subjected to these conditions. While military AE equipment does undergo crash hazard acceleration testing, equipment functionality during or after sustained acceleration remains to be evaluated.
View Article and Find Full Text PDFTrials
December 2024
Centre for Public Health, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
Background: Traffic crashes are the leading cause of death globally for people aged 5-29 years, with 90% of mortality occurring in low- and middle-income countries (LMICs). The STABLE (Slashing Two-wheeled Accidents by Leveraging Eyecare) trial was designed to determine whether providing spectacles could reduce risk among young myopic motorcycle users in Vietnam.
Methods: This investigator-masked, stepped-wedge, cluster randomised naturalistic driving trial will recruit 625 students aged 18-23 years, driving ≥ 50 km/week, with ≥ 1-year driving experience and using motorcycles as their primary means of transport, in 25 clusters of 25 students in Ho Chi Minh City, Vietnam.
Ophthalmic Epidemiol
December 2024
School of Population and Global Health, The University of Western Australia, Perth, Australia.
Purpose: Visual field loss poses a high personal cost to those affected, significantly impacting activities of daily living, including driving. However, there is conflicting evidence on the association between visual field loss and crash risk. This study examined the association between severity and location of binocular visual field loss and motor vehicle crashes in older adults aged 50+, using linked population data over a 29-year study period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!