Hemodynamics plays a critical role in early diagnosis and investigating the growth mechanism of intracranial aneurysms (IAs), which usually induce hemorrhagic stroke, serious neurological diseases, and even death. We developed a transparent blood vessel-on-a-chip (VOC) device for magnetic resonance imaging (MRI) to provide characteristic flow fields of early IAs as the reference for early diagnosis. This VOC device takes advantage of the transparent property to clearly exhibit the internal structure and identify the needless air bubbles in the biomimetic fluid experiment, which significantly affects the MRI image quality. Furthermore, the device was miniaturized and easily assembled with arbitrary direction using a 3D-printed scaffold in a radiofrequency coil. Computational fluid dynamics (CFD) simulations of the flow field were greatly consistent with those data from MRI. Both internal flow and wall shear stress (WSS) exhibited very low levels during the IA growth, thus leading to the growth and rupture of IAs. PC-MRI images can also provide a reasonable basis for the early diagnosis of IAs. Therefore, we believed that this proposed VOC-based MR imaging technique has great potential for early diagnostic of intracranial aneurysms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.0c02164DOI Listing

Publication Analysis

Top Keywords

early diagnosis
16
intracranial aneurysms
12
voc device
8
early
6
transparent vessel-on-a-chip
4
device
4
vessel-on-a-chip device
4
device hemodynamic
4
hemodynamic analysis
4
analysis early
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!